

A Peer Reviewed International Journal

Articles available online http://www.ijoer.in; editorijoer@gmail.com

Vol.8., Issue.5, 2020 Sept-Oct

RESEARCH ARTICLE

ISSN: 2321-7758

ANALYSIS AND FABRICATION OF MICRO COLD STORAGE PLANT AND IMPROVING ITS PERFORMANCE USING PHASE CHANGE MATERIAL (PCM)

HASAN BAIG

PG Student, Department of Mechanical engineering, TIT Bhopal, M.P. (India) DOI: 10.33329/ijoer.8.5.7

ABSTRACT

In rural areas the supply of power is non uniform and the load demand varies as per the requirement. Cold storage present in such areas are facing this difficulties because cold storage containing items like agricultural commodities and food items are prone to spoilage in absence of power. This project research proposes the introduction of a Phase Change Material in Cold storage plants to provide solution to such problems. This project promises to reduce and control the temperature drop for cold storage plant located in such areas with variable load. Also the project aims in supporting the cold storage vehicle in covering a long distance as the temperature drop will be controlled as per their requirements in even hot summer days.

Keywords: Phase Changing Material (PCM), Ethylene Glycol, Polyurethane Foam

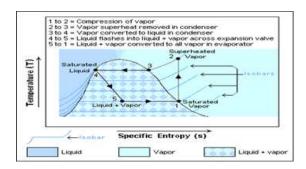
Introduction:

Power Cut offs are often nowadays due to accidents, or because of implementation of demand side management schemes to shift power usage to avoid peak loads by the electricity supplier or shifting the user to the off loads electricity usage as per the pricing periods [1]. It is important to maintain regular temperature inside cold storage plants and cold storage vehicles.

Almost all frozen and chilled foods are very sensitive to temperature variations. Therefore Cold Storage plant is used to overcome this limitation [2][4][6]. TES systems for both heat and cold are necessary for good performance of many industrial processes.

PCM can be utilised in applications of load shifting so that electricity demand is shifted as per the demand [4][8][9]. PCM melts in the range of narrow temperature ranges and absorbs huge amount of energy while in the transition state so, minimizing the rise in the temperature after power cut off or any breakdown.

High energy storage density and high power capacity for charging and discharging are desirable properties of any storage system. The concept of Thermal Energy Storage calls for the demand of a material which can hold temperature for a longer time. This requirement can be fulfilled by utilising the Phase Changing Material[10][11]. PCM can considerably be able to hold the temperature, control the temperature as per the demand and requirement of the scenario.


Recently there are various research going on for utilising the PCM for residential building to control the temperature so that minimum cooling is required for the buildings [3][7].

A Peer Reviewed International Journal

Articles available online http://www.ijoer.in; editorijoer@gmail.com

Vol.8., Issue.5, 2020 Sept-Oct

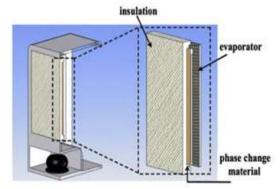


FIGURE 1 VCR Cycle

Analysis on ANSYS:

We have created a CAD model in SolidWorks using the ideal dimension as per the capacity. After importing the model in ANSYS, following results are derived which clearly shows in sight of manufacturing and operations parameters used are feasible and results can be drawn once the model comes in operation.

Evaporator:

For analysing the following given parameters were taken into consideration

TABLE 1: Model (A4) > Geometry

TABLE 1. Model (A4) > decimenty				
Object Name Geometry				
State	Fully Defined			
Definition				
Source C:\Users\Hasan Baig\Desktop\Sample ana				
Туре	Iges			
Length Unit	Meters			
Element Control	Program Controlled			
Display Style	Body Color			
	Bounding Box			
Length X	0.3208 m			
Length Y	0.3208 m			
Length Z	0.31 m			
	Properties			
Volume	1.0033e-002 m³			
Mass	19.063 kg			
Scale Factor Value	1.			
Statistics				
Bodies 1				
Active Bodies	1			
Nodes	3125			
Elements	1500			
Mesh Metric	None			
Basic	Geometry Options			
Solid Bodies	Yes			
Surface Bodies	Yes			
Line Bodies	No			

A Peer Reviewed International Journal Articles available online http://www.ijoer.in; editorijoer@gmail.com

Parameters	Yes			
Parameter Key	DS			
Attributes	No			
Named Selections	No			
Material Properties	No			
Advanced Geometry Options				
Use Associativity	Yes			
Coordinate Systems	No			
Reader Mode Saves Updated File	No			
Use Instances	Yes			
Smart CAD Update	No			
Compare Parts On Update	No			
Attach File Via Temp File	Yes			
Temporary Directory	C:\Users\Hasan Baig\AppData\Local\Temp			
Analysis Type	3-D			
Mixed Import Resolution	None			
Decompose Disjoint Geometry	Yes			
Enclosure and Symmetry Processing	Yes			

TABLE 2
Model (A4) > Geometry > Parts

Object Name	Part 1				
State	Meshed				
Graphics Properties					
Visible	Yes				
Transparency	1				
Definition					
Suppressed	No				
Stiffness Behavior	Flexible				
Coordinate System	Default Coordinate System				
Reference Temperature	By Environment				
Material					
Assignment	FR-4 Epoxy				
Nonlinear Effects	Yes				
Thermal Strain Effects	Yes				
Bounding Box					
Length X	0.3208 m				
Length Y	0.3208 m				
Length Z	0.31 m				
Properties					
Volume	1.0033e-002 m³				
Mass	19.063 kg				
Centroid X	-2.5545e-012 m				
Centroid Y	2.5545e-012 m				
Centroid Z	0.1341 m				
Moment of Inertia Ip1	0.43789 kg·m²				

A Peer Reviewed International Journal

Articles available online http://www.ijoer.in; editorijoer@gmail.com

Vol.8., Issue.5, 2020 Sept-Oct

Moment of Inertia Ip2	0.43789 kg·m²		
Moment of Inertia Ip3	0.53482 kg·m²		
Statistics			
Nodes	3125		
Elements	1500		
Mesh Metric	None		

Object Name	Temperature	Convection	Radiation	
State				
		Scope		
Scoping Method		Geometry Selection		
Geometry		1 Face		
Definition				
Туре	Temperature	Convection	Radiation	
Magnitude	0. °C (ramped)			
Suppressed	No			
Film Coefficient		2.4e-002 W/m ² ·°C (ramped)		
Ambient Temperature	22. °C (ramped)			
Convection Matrix		Program Controlled		
Correlation			To Ambient	
Emissivity			1. (step applied)	

Methodology:

After analysis, we designed our storage space & its capacity which gives us feasible working parameters [21]. Now after that it is necessary to fix the target temperature i.e., the lowest temperature that we want to gain from our system.

According to the above requirement we need to select the compressor which can adjust with our capacity & make it possible for the system to reach the target temperature.

Now after the selection of a compressor we need to select other components which are directly related to the compressor.

- 1. Storage capacity: 10.160 liters
- 2. 0.01016 Tones of refrigeration
- 3. Target temperature = -20 'C
- 4. Compressor = 1/8 HP reciprocating type
- 5. Condenser =9*9*2 (cross flow type)
- Throttling tube =1mm*12ft (maximum throttling tube length used with respect to compressor to gain target temperature)

- 7. Copper tubing 4mm
- 8. Temperature indicators (range -40 to 110 'C)
- 9. Pressure gauges (suction & delivery)
- First of all we have prepared a frame or a platform on which we can mount all components.
- After that we have constructed a cabin for the purpose of storage space, in it we placed an evaporator (folded in a square shaped).
- Fixed the cabin on the platform, between cabin & evaporator we filled Polyurethane Foam solution which on solidifying works as insulation.
- Now we fixed the compressor & condenser on the frame. After that we have connected them by tubing with gas welding (oxyacetylene).
- Now fixed the throttling with evaporator & almost 95% of throttling tube is kept between the insulation only in the cabin to prevent heat loss in it.

A Peer Reviewed International Journal

Articles available online http://www.ijoer.in; editorijoer@gmail.com

Vol.8., Issue.5, 2020 Sept-Oct

- Now to fix the pressure gauges we bypassed the suction & delivery tubes & connected to the gauges.
- Now fixed temperature indicators at their respective places.
- Now filled the refrigerant R134a through compressor.
- Sealed the compressor.
- Fabrication completed
- Now start the setup & ensure the minimum temperature attained in the storage space
- Take the initial readings with no load & then further with load(both with & without PCM)

Fig 1: Setup for VCR

Observations:

1. When power is ON

Initial temperature of storage space=24.8 'C

Conditio	Compres	Durati	Temp.	Temp.
ns	sor Cycle	on in	Observ	Observ
		Mins	ed (T1)	ed (T2)
			in °C	in °C
Without	1 st Cycle	4 min	-2.7	28.4
load &		26 sec		
without				
PCM				
With	1 st Cycle	4 min	-3.5	31.5
Load &		26 sec		
without				
PCM				
With	1 st Cycle	4 min	-3.0	30.5
Load &		26 sec		
with				

PCM		

2. Power cut off Readings

Without PCM:

Load temperature, TI = -15 'C

Observation temperature To = 5 'C

Time taken to reach from T-I to T-o = 13 minutes

With PCM:

Load temperature, TI = -15 'C

Observation temperature To = 5 'C

Time taken to reach from TI to To = 71 minutes

Conditi	Compre	Initial	Final	Time
ons	ssor	Tempera	Tempera	taken
	Cycle	ture, T _i in	ture, T _f in	in
		°C	°C	minu
				tes
Withou	1 st Cycle	-15	5	13
t PCM				minu
				tes
With	1 st Cycle	-15	5	71
PCM				minu
				tes

Calculations& Results:

Refrigerating effect (R.E.):

It is the difference between the enthalpy at evaporator outlet and the enthalpy at evaporator inlet or the total temperature dropped across the evaporator section.

R.E. = $h_2 - h_1$

Compressor Work (W_c):

It is the difference between the enthalpy at the compressor outlet and the enthalpy at compressor inlet.

 $Wc = h_3 - h_2$

Coefficient of Performance (C.O.P.):

It is the ratio of the refrigerating effect produced in the evaporator to the amount of work done by the compressor.

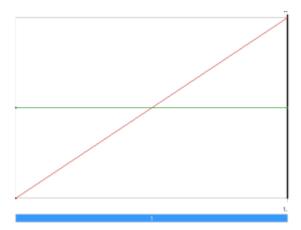
A Peer Reviewed International Journal

Vol.8., Issue.5, 2020 Sept-Oct

Articles available online http://www.ijoer.in; editorijoer@gmail.com

C.O.P. = (R.E.)/Wc

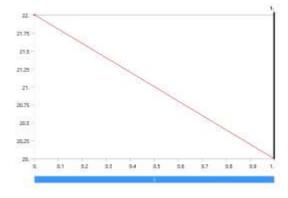
Result:


(C.O.P.)with PCM >(C.O.P.)without PCM

Following are the graphs which show the analysis results bases on the temperature and heat flow within the system. Heat Flow analysis includes both convection and radiation heat flow.

Graph 1: Model (A4) > Steady-State Thermal (A5) > Temperature

Below graph (Graph 2) explains about the temperature distribution. The temperature is distributed uniformly and as the time passes the drop in temperature is 0 after unity.

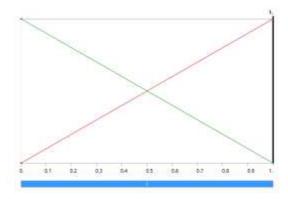

Graph 2: Model (A4) > Steady-State Thermal (A5) > Convection

X axis: Temperature Distribution

Y axis: Time

Below graph (Graph 3) explains about the heat flow distribution. The heat flow through convection remains constant at all the faces and as the time

passes the convection heat transfer achieves maximum.



Graph-3

X axis: Convective heat flux distribution

Y axis: Time

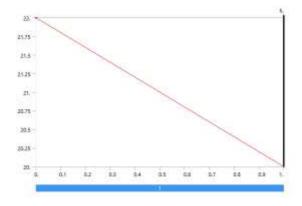
Below (Graph 4) explains about the temperature distribution. The temperature is distributed uniformly and as the time passes the drop in temperature is 0 after unity.

Graph 4

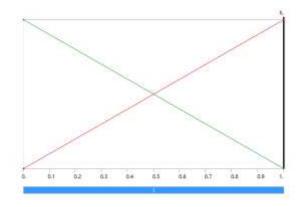
X axis: Temperature Distribution

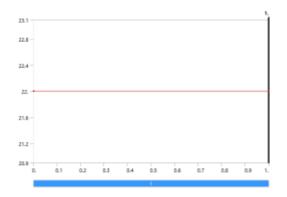
Y axis: Time

Below graph (Graph 5) explains about the heat flow distribution. The heat flow through convection remains constant at all the faces and as the time passes the convection heat transfer achieves maximum.


X axis: Temperature Distribution

Y axis: Time




Articles available online http://www.ijoer.in; editorijoer@gmail.com

Graph 5: Model (A4) > Steady-State Thermal (A5) > Temperature

Graph 6: Model (A4) > Steady-State Thermal (A5) > Convection

Graph 7: Model (A4) > Steady-State Thermal (A5) > Radiation

Calculations for COP:

Without Load without PCM:

COP
$$| max = \frac{T1}{T2-T1}$$

= 270.3/(298-270.3)
= **9.75**

From Steam Table (R134a)

 $h_2 = h_g @ 28.4 'C (saturated vapor)$

 $= 262.50 \, kJ/kg$

$$h_3 = h_4 = h_f @ 28.4 'C$$

88.61 KJ/kg

Refrigerating Effect (R.E.) = $h_1 - h_4$

= 245.628-88.61

= 157.018 kJ/kg

Now, Compressor Work (C.W.) = $h_2 - h_1$

= 262.50-245.628

 $= 16.872 \, kJ/kg$

COP =
$$\frac{R.E.}{C.W.}$$

= $\frac{157.018}{16.872}$ = 9.306

With Load & without PCM

COP
$$|_{max} = T_1/(T_2-T_1)$$

= 269.5/(304.5-269.5)

= 7.70

From Steam Table (R134a)

=245.1912 kJ/kg

 $h_2 = h_g @ 31.5 'C (saturated vapor)$

= 264.235 kJ/kg

 $h_3 = h_4 = h_f @ 31.5 'C$

=93.665 kJ/kg

Refrigerating Effect (R.E.) = $h_1 - h_4$

= 245.1912-93.665

= 149.5262 kJ/kg

Now, Compressor Work (C.W.)

 $= h_2 - h_1$

= 264.235-245.1912

A Peer Reviewed International Journal Articles available online http://www.ijoer.in; editorijoer@gmail.com

Vol.8., Issue.5, 2020 Sept-Oct

= 21.042 kJ/kg

$$COP = \frac{R.E.}{C.W.}$$

$$=\frac{149.5262}{21.042}$$
 = **7.10**

With Load & with PCM:

COP |max = T1/(T2-T1)|

= 270/(303.50-270)

= 8.06

From Steam Table (R134a)

h1= hg @ -3.0 'C

=246.4825 kJ/kg

h2 = hg @ 30.5 'C (saturated vapor)

= 264.745 kJ/kg

h3 = h4 = hf @ 30.5 'C

=92.215 kJ/kg

Refrigerating Effect (R.E.) = h1 - h4

= 246.4825-92.215

= 153.2675 kJ/kg

Now, Compressor Work (C.W.) = h2 - h1

= 264.745-245.4525

= 19.2925 kJ/kg

COP = (R.E.)/(C.W.)

=153.2675/19.2925 = 7.84

Comparison of COPs

Ideal COP

Without PCM With PCM

COP | ideal =7.7 COP | ideal =8.06

COP | with PCM > COP | without PCM

Percentage increase in COP with PCM = (8.06-

7.7)/7.7 = 5 %

Actual COP

Without PCM With PCM

COP | = 7.10 COP |=7.84

COP | with PCM > COP | without PCM

Percentage increase in COP with PCM = (7.84-7.10)/7.10

,,

= 10.42 %

Thus slight increment in COP is observed by 10.29%

&~9.8% in ideal and actual case respectively .

Comparison on the basis of Time to recover a

temperature limit

Load temperature, TI = -15 'C

Target temperature, Tt = 5'C

Without PCM:

Time taken to reach 5'C from -15 'C = 13 minutes

In whole day , time = 24*60

=1440 min

No times system must should be started

= 1440/13

= 110.76 times (approx)

Energy consumed in one start = 0.1 kWh

Power consumed in a single day

= 110.76*0.1

= 11.07 kW

With PCM:

Time taken to reach 5'C from -15 'C

= 71 minutes

Time taken | with PCM > Time taken | without PCM

In whole day, time = 24*60

=1440 min

No times system must should be started

= 1440/71

=20 times

Energy consumed in one start = 0.1 kWh

Power consumed in a single day = 20*0.1

= 2 kW

In a single day, power saved = (11.07-2)

= 9 .07 kW

A Peer Reviewed International Journal Articles available online http://www.ijoer.in; editorijoer@gmail.com

Vol.8., Issue.5, 2020 Sept-Oct

Conclusion:

- COP is seen to be increased by 5 % & 10.42 % in ideal & actual case when using PCM.
- Compressor work is reduced & refrigerating effect increased on using PCM
- In the absence of power supply PCM plays an important role in providing long lasting cooling effect. From observations previously mentioned it is clear that time taken for rise of evaporator temp after shut down of power is much slower with PCM than without PCM w r t time.
- As previously indicated in observation, power consumption of plant for 24 hrs is 11.07 kW & 2 kW without PCM & with PCM respectively Thus with PCM power consumption of plant can be decreased and energy can be save to a good extent. We can save 9.07 kW of electricity in 24 hrs.

Note: Above readings are after steady state.

- Due to reduction in compressor work, compressor outlet temp. is also decreased. Thus it produces less heat in the surrounding environment.
- Time taken with PCM = 5.6 times * Time taken without PCM
- Thus potential losses due to power cut off can be reduced by a factor of 5.46.
- Cold Storage Plant fitted with PCM material can be useful in load fluctuating & rural areas as PCM can maintain required temperature for long period of time even without power supply.

• Factors affecting performance

- Placement of PCM: We have placed PCM inside
 the evaporator which leads to some of heat
 losses due to absorption by insulation. To ensure
 no heat loss, PCM should made an integral part
 of insulation at inner side so that heat which is
 lost to the insulation is now consumed by the
 PCM which can come in use during power loss.
- Polythene bags- PCM is filled in polythene bags.
 These polythene bags are bad conductor of heat
 so they act as barriers in cooling of PCM, thus it
 increases its cooling time and affects its
 performance.
- Heat loss in tubes & throttling tubes: Tubes should be insulated well to prevent heat losses.
 Also throttling tube can be insulated, instead we

- can make it in integral part in the insulation of cabin, the same as we have done in our project.
- Air Gap When PCM is inserted inside the storage space air gaps are seen at various points.
 These air gaps causes heat loss and reduce cooling effect because air is also a poor conductor

If all these factors are overcome or minimized and PCM can be filled in liquid form by making an integrated design with the freezer of same material as freezer, outcomes of this project will be much better and power consumption can be decreased to a good extent making it more efficient.

This concept has a good future scope in the field of refrigeration and air conditioning if limitations are overcome by proper design. It can be used in following purposes with decrease in power usage and increased performance.

Future Scope:

- Large cold storage plants & Ware houses
- Air Conditioning systems
- Space cooling
- D-fridges
- Cold storage Vehicles
- Residential and Office buildings
- Control rooms in Remote areas
- Aircraft cooling system

References

- [1]. Nazri Bin Abdullah1 , Siti Salwani Yaacob2 , Bana Handaga3 , Yuszaimi Yaacob, Automation of Residential Electricity Cut off Using Network Based Embedded Controller, 2012 International Conference on Computer & Information Science (ICCIS)
- [2]. Arun Kumar and S.K.Shukla, A Review on Thermal Energy Storage Unit for Solar Thermal Power Plant Application, International Conference on Technologies and Materials for Renewable Energy, Environment and Sustainability, TMREES15
- [3]. Amir Baniassadi, Behrang Sajadi, Majid Amidpur Navid Noori Economic optimization of PCM and insulation layer thickness in residential buildings

A Peer Reviewed International Journal

Vol.8., Issue.5, 2020 Sept-Oct

Articles available online http://www.ijoer.in; editorijoer@gmail.com

- [4]. Thermal Energy storage using PCM for cold applications by Eduard Oro Prim. Deposit legal: L.288-2013
- [5]. Md.Mansoor , IJIRSET volume 2 , Research Paper on Cold Storage Plant.
- [6]. Luisa F Cabeza , Research paper on advances in thermal energy storage systems.
- [7]. Caliskan Hakan, Dincer Ibrahim, Hepbasli Arif. Thermodynamic analysis and assesments of various thermal energy storage systems for buildings. Energy Converse Manage 2012;62:109-22.http://dx.doi.org/10.1016/j. enbuild.2007.01.022.
- [8]. Kuznik F, Virgone J, Roux JJ. Energetic efficiency of room wall containing PCM wallboard: a full scale experimental investigation. Energy Build 2008;40:148-56.
 - http://dx.doi.org/10.1016/j.enbuild.2007.01. 022.
- [9]. Halford CK, Boehm RF. Modelling of phase change material peak load shifting. Energy Build 2007; 39:298-305. http://dx.doi.org/10.1016/j. enbuild.2006.07.005.
- [10]. Mazo J, Delgado M, Marin JM, Zalba B. Modeling a radiant floor system with phase change material (PCM) integrated into a building simulation tool: analysis of a case study of a floor heating system coupled to a heat pump. Energy Build 2012;47:458–66. http://dx.doi.org/10.1016/j.enbuild.2011.12. 022.
- [11]. Kim J-S, Darkwa K. Simulation of an integrated PCM wallboard system. Int J Energy Res 2003;27:215–23. http://dx.doi.org/10.1002/er.869.
- [12]. Castell Aetal. Experimental study of using PCM in brick constructive solutions for passive cooling. Energy Build 2010;42:534–40. http://dx.doi.org/10.1016/j.enbuild.2009.10.022
- [13]. Chan Hoy-Yen, Riffat Saffa B, Zhu Jie. Review of passive solar heating and cooling technologies. Renewable Sustainable Energy Rev 2010;14:781–9.
- [14]. Zhang Meng, Medina Mario A, King Jennifer B. Development of a thermally enhanced frame wall with phase change materials for on-peak air conditioning demand reduction

- and energy savings in residential buildings. Int J Energy Res 2005;29:795–809. http://dx.doi.org/10.1002/er.1082.
- [15]. Tzivanidis C, Antonopoulos KA, Kravvaritis ED. Parametric analysis of space cooling systems based on night ceiling cooling with PCM-embedded piping. Int J Energy Res 2012;36:18–35. http://dx.doi.org/10.1002/er.1777.
- [16]. Sajadi Behrang, Baniassadi Amir. On the effect of using phase change materials in building energy consumption and CO2 emission in Iran: climatic and parametric study. Energy Equip Syst 2015;3(2):73–81.
- [17]. Donghao Xu, Qua Ming, Hang Fu, Zhao Yin. Multi-objective optimal design of a solar absorption cooling and heating system under life-cycle uncertainties. Sustainable Energy Technol Assess 2015;11:92–105. http://dx.doi.org/10.1016/j.seta.2015.07.001
- [18]. Ozel Meral. Effect of insulation location on dynamic heat-transfer characteristics of building external walls and optimization of insulation thickness. Energy Build 2014;72:288–95. http://dx.doi.org/10.1016/j.
- [19]. Özel Gülcan, Açıkkalp Emin, Görgün Burak, Yamık Hasan, Caner Necmettin. Optimum insulation thickness determination using the environmental and life cycle cost analyses based entransy approach. Sustainable Energy Technol Assess 2015;11:87–91. http://dx.doi.org/10.1016/j.seta.2015.06.004
- [20]. Sharma Atul, Shukla A, Chen CR, Wu Tsung-Nan. Development of phase change materials (PCMs) for low temperature energy storage applications. Sustainable Energy Technol Assess 2014;7:17–21. http://dx.doi.org/10.1016/j.

