
International Journal of Engineering Research-Online
A Peer Reviewed International Journal

Articles available online http://www.ijoer.in; editorijoer@gmail.com

Vol.5., Issue.3, 2017

May-June

231 B.RAJ KUMAR, B.N.S MUNDA

BUILT IN SELF TEST FOR SYSTEM ON CHIP MEMORY

B.RAJ KUMAR1, B.N.S MUNDA2

1Dept of Electronics and Communication, National Institute of Technology, Jamshedpur, India
rajkumarbhogavelli@gmail.com

2Associate Professor, Dept of Electronics and Communications, National Institute of Technology,
Jamshedpur, India

ABSTRACT

Miniaturization and integration of different cores onto a single chip are increasing the

complexity of VLSI chips. To ensure that these chips operate as desired, they have to

be tested at various phases of their development. Built-In Self-Test (BIST) is one

technique which allows testing of VLSI chips from wafer-level to system-level. The basic

idea of BIST is to build test circuitry inside the chip so that it tests itself along with the

BIST circuitry. The idea of current research is to develop BIST configurations for testing

memory cores and other regular structure cores in System-on-Chips (SoCs). BIST

approach for testing memory cores and other regular structure cores in FPGAs is

described in this thesis. Another approach which takes advantage of some of the

architectural capabilities of Atmel SoCs to reduce test time is also described in this

thesis.

Keywords: Built-in self test (BIST), SoC, Output response analyzer (ORA), (Advanced

Virtual Reduced Instruction Set Computer (AVR)

INTRODUCTION

 Since the arrival of the first transistor-

based computer, high scale integration became one

of the main concerns in the hardware design

techniques. In the early 1970's relatively high levels

of integration were achieved, but the continuing

effort to miniaturize and build more complex digital

circuitry remained one of the goals in leading

computer construction and chip design [1]. As a

result, semiconductor integration has progressed

from Small Scale Integration (SSI) to Very Large Scale

Integration (VLSI) and now to System Level

Integration (SLI) or System-on-Chip (SoC) [1].

System-on-Chip (SoC)

 SoC technologies are the consequent

continuation of the Application Specific Integrated

Circuit (ASIC) technology, whereas complex

functions, that previously required heterogeneous

components to be merged onto a printed circuit

board, are now integrated within one single silicon

IC or chip [2]. As device integration scales grew, the

enhanced performance of memory, microprocessors

and logic devices boosted the performance of the

digital systems they constituted. However,

performance increases in larger systems were

hampered by speed limitations associated with the

long and numerous interconnects between devices

on the printed circuit board (PCB) and associated

input/output (I/O) buffers on the chips. Closely

related system functions must be combined on a

single chip to eliminate this bottleneck and take full

advantage of improvements in transistor switching

speeds and higher integration scales. This is

precisely the capability that SoC technology

provides. Rapid advances in semiconductor

processing technologies allowed the realization of

complicated designs on the same IC. SoCs can be

broadly classified into two categories: ASIC-based

and Configurable or Programmable. While the

Configurable SoCs (CSoC) can be customized to

RESEARCH ARTICLE ISSN: 2321-7758

International Journal of Engineering Research-Online
A Peer Reviewed International Journal

Articles available online http://www.ijoer.in; editorijoer@gmail.com

Vol.5., Issue.3, 2017

May-June

232 B.RAJ KUMAR, B.N.S MUNDA

different applications through embedded

reconfigurable logic cores, ASIC-based SoCs cannot

be customized. CSoCs combine the advantages of

both ASIC-based SoCs and multi-chip board

development using standard components [1]. The

major general goal for the development of such

application-tailored reconfigurable architectures is

to realize adaptivity vs. power/performance/cost

trade-offs by migrating functionality from ASICs to

multi-granularity reconfigurable hardware [3].

2. BIST Approach for Free RAMs Using Embedded

Processor Core

 The idea of this approach is to generate

TPG signals from the embedded processor core. As a

result, this approach is applicable only to the Field

Programmable System Level Integrated Circuit

(FPSLIC). The processor is also responsible for

running the BIST, retrieving the BIST results,

diagnosing the results and reporting back the

diagnostic results to a higher controlling device (PC

for example). The embedded processor in the FPSLIC

can write into the configuration memory of the

FPGA. This capability of the processor is used in

combining the three RAM BIST configurations into

one configuration. The free RAMs are initially

configured in dual-port synchronous mode for

running BIST. Then RAMs and FPGA logic are

reconfigured to test RAMs in single-port

synchronous and asynchronous modes. Thus, by

avoiding two of the three downloads, testing time

can be reduced significantly (approximately 3

times). Since only one bit-stream has to be stored

instead of three, memory requirements are also

reduced by a factor of three. The TPG is very

irregular in structure. The rest of the circuit

containing ORA and RAMs and can be made regular.

Thus, by making the BIST circuitry inside the FPGA

regular, the entire BIST logic to be built inside the

FPGA (RAMs, ORAs and interconnections) can be

algorithmically configured by the processor. This

further reduces testing time because no bit-stream

needs to be downloaded into the FPGA.

2.1 BIST Architecture: The architecture used is

similar to the one used in the previous approach

except that the TPG signals are generated by the

processor. In dual-port mode, as in the previous

approach, each ORA compares two adjacent RAMs

as shown in Figure. In single-port mode, each ORA

compares data from RAM with expected data

generated by the processor as shown in Figure

Figure 1: BIST Architecture

2.2 BIST Architecture for Single-port Modes : The

BIST architecture for testing free RAMs in single-port

synchronous and asynchronous modes is similar and

is as shown in Figure. All RAMs are tested in parallel

using a single TPG and the ORA compares data from

RAMs with expected read data results generated by

the TPG. The design of the single-bit ORA is shown in

Figure. A tri-state buffer is required in this design as

the write-data lines are used for both reading and

writing data in single-port mode. The active high tri-

state buffer in the ORA passes TPG data through

when writing into the RAM and is tri-stated when

reading from the RAM which allows the read data to

be compared with expected data from the TPG. The

ORA design for single-port mode, though not as

simple as dual-port design, makes diagnosis of RAMs

much simpler. Such a design is not used in dual-port

mode because the generation of expected results by

the TPG is more complicated as data can be read

and written at the same time and also routing

resources are not sufficient to implement such a

design.

2.3 BIST Architecture for Dual-port Synchronous

Mode: The BIST architecture used for testing free

RAMs in dual-port synchronous mode is shown in

Figure 3.1(a). All RAMs are tested in parallel using a

single TPG and the ORA is designed to compare

outputs of two adjacent RAMs. All RAMs except

those on the rightmost and leftmost columns are

compared by two ORAs. Two TPGs are generally

used for this kind of BIST architecture to make sure

that TPG is not faulty. But the Finite State Machine

(FSM) based TPG is too large to replicate and fit

inside the device. Therefore, it is assumed that the

logic and routing resources are known to be fault-

free as a result of previously executed BIST for

programmable logic and routing resources. All the

ORAs are connected in the form of a scan chain to

International Journal of Engineering Research-Online
A Peer Reviewed International Journal

Articles available online http://www.ijoer.in; editorijoer@gmail.com

Vol.5., Issue.3, 2017

May-June

233 B.RAJ KUMAR, B.N.S MUNDA

shift the BIST results out on (Advanced Virtual

Reduced Instruction Set Computer).

Figure 2: Dual-Port Free RAM BIST Architecture

Figure 3: ORA Design.

BIST Approach for Free RAMs Using Embedded

Processor Core The idea of this approach is to

generate TPG signals from the embedded processor

core. As a result, this approach is applicable only to

the FPSLIC. The processor is also responsible for

running the BIST, retrieving the BIST results,

diagnosing the results and reporting back the

diagnostic results to a higher controlling device (PC

for example). The embedded processor in the FPSLIC

can write into the configuration memory of the

FPGA. This capability of the processor is used in

combining the three RAM BIST configurations into

one configuration. The free RAMs are initially

configured in dual-port synchronous mode for

running BIST. Then RAMs and FPGA logic are

reconfigured to test RAMs in single-port

synchronous and asynchronous modes. Thus, by

avoiding two of the three downloads, testing time

can be reduced significantly (approximately 3

times). Since only one bit-stream has to be stored

instead of three, memory requirements are also

reduced by a factor of three. The TPG is very

irregular in structure. The rest of the circuit

containing ORA and RAMs and can be made regular.

Thus, by making the BIST circuitry inside the FPGA

regular, the entire BIST logic to be built inside the

FPGA (RAMs, ORAs and interconnections) can be

algorithmically configured by the processor. This

further reduces testing time because no bit-stream

needs to be downloaded into the FPGA.

3. Implementation of BIST Approach

 Initially free RAMs are configured to be

tested in dual-port mode. The FPGAWE and FPGARE

lines are used as clocks for running BIST and for

retrieving BIST results, respectively. The Data bus is

used for providing address, data and output enable

signals to the free RAMs. Since the 8-bit wide data

bus is not sufficient to provide all required signals.

On-Chip Diagnostics: AVR is not only capable of

executing the BIST sequence and retrieving the BIST

results but also capable of performing diagnostic

procedures based on the BIST results for the

identification of faulty RAMs in the FPGA core. The

AVR, after running diagnostic procedures, identifies

the location of the faulty RAM in terms of its X

(column) and Y (row) coordinates. The AVR also

identifies which bit(s) of the RAM is faulty. Since two

different BIST architectures are used for testing free

RAMs, two different diagnostic procedures were

developed. In single-port test configuration, the

ORA compare the expected results generated by the

AVR with the data read from the RAMs Under Test

(RUTs). Since the ORA incorporate a shift register,

the BIST results latched in the ORA are retrieved by

the AVR. Each bit retrieved corresponds to a single-

bit of the 4-bit words of the RAM. The position of

the ORA in the FPGA array, and the corresponding

RAM with which it is associated, is determined by

the ORA's position in the shift register. As a result of

the ORA comparison of the RUTs output with the

expected read results produced by the TPG, the

diagnostic procedure for the single-port RAM modes

of operation is straight forward. The diagnostic

procedure looks for ORA failure indications (logic 1s)

and translates the positions based on the shift

register order to identify not only which RAMs are

faulty but also which bits in a given RAM are faulty.

Faulty ORA can mimic a fault in its corresponding

RAM. This can be identified when PLBs are tested. In

dual-port test configuration, since each ORA

compares two adjacent RAMs a different diagnostic

approach is used. The Multiple Faulty Cell Locator

algorithm originally developed for diagnosing faulty

PLBs in FPGAs is used for diagnosis of dual-port

RAMs. This procedure is more complicated because

it is possible that equivalent faults in two RAMs

being compared by the same ORA will go

undetected.

International Journal of Engineering Research-Online
A Peer Reviewed International Journal

Articles available online http://www.ijoer.in; editorijoer@gmail.com

Vol.5., Issue.3, 2017

May-June

234 B.RAJ KUMAR, B.N.S MUNDA

Figure 4: RAMBIST Implementation from AVR

 Since all the RAMs except those at the

leftmost and the rightmost edges of the FPGA are

being observed by two sets of ORAs and being

compared to a different RAM in each set of ORAs, it

is highly improbable for the faulty RAMs to go

undetected. This approach however loses diagnostic

resolution for the RAMs at the leftmost and

rightmost edges of the FPGA The goal was to

develop BIST configurations for testing free RAMs in

AT40K series FPGAs and AT94K series SOCs since

they have embedded AT40K FPGA cores. Initially

VHDL was used to design the BIST circuitry. This

approach was useful only for pass/fail indication and

not for diagnosis to indicate faulty RAMs due to lack

of support from the synpaper tool for control of

placement of RAMs relative to their associated

ORAs. As a result, a combined VHDL-MGL approach

was used to design the BIST circuitry. Three BIST

configurations were developed to completely test

free RAMs. The embedded microcontroller (AVR) in

AT94K series SoCs can access the embedded FPGA

core and can write into its configuration memory.

This feature gave rise to an alternate BIST approach

for SoCs. The AVR was used to control the BIST i.e.,

to start the BIST, retrieve the results after the BIST

was completed and present the results to a higher

controlling device (PC) which performed diagnosis

based on BIST results. The same three BIST

configurations were developed to test the free

RAMs from the AVR. BIST circuitry implemented

inside the FPGA can be made regular by moving the

irregular TPG function into the AVR, leaving only the

ORAs and RAMs in the FPGA. This gave rise to the

possibility of combining the three BIST

configurations into one. This was possible because

regular BIST structure inside the FPGA is similar for

all three configurations and can now easily be

reconfigured by the AVR for the next mode of

testing. Diagnosis was also moved from PC to AVR

and thus a single configuration was developed

which tests free RAMs completely and also performs

diagnosis. A similar approach was used to test the

embedded data SRAM shared by both AVR and

FPGA.

Table 1: BIST and Diagnosis Summary

function Executi

on

cycles

Data

memory(byte

s)

Program

memory(byte

s)

BIST 100 464 18

diagnosis 28 332 33

total 128 796 51

 Due to limitations imposed by the AVR

architecture, three configurations were required to

completely test the data SRAM. The VHDL-only

approach did not yield any benefits for Atmel

FPGAs. However, due to better synpaper tool

support, the VHDL approach seemed worth

experimenting on Xilinx FPGAs. This approach

yielded good results on Xilinx FPGAs by controlling

the placement of RAMs with respect to their

associated ORAs. A portable VHDL code was thus

created to test embedded block RAMs and LUT

RAMs in all families of FPGAs from Xilinx. A total of 9

BIST configurations were developed for completely

testing block RAMs in all families of FPGAs from

Xilinx and another 3 configurations.

4. Results & Observations

 It was observed that the architecture of an

FPGA has a significant impact on BIST development.

FPGAs using two different architectures were

considered in this paper. Atmel FPGAs use fine-

grained architecture as opposed to Xilinx FPGAs

which use coarse-grained architecture. Such a

problem can occur with coarse-grained FPGAs as

well when logic or routing resources are used

almost completely.

Placement and routing problems did not occur with

Xilinx FPGAs when testing block RAMs. However,

LUT RAM testing caused placement and routing

issues, as almost 100% of logic resources were used.

Routing issues were solved once placement of RUTs

and ORAs were defined with a constraint file. TPG

signals become heavily loaded, particularly when

testing all the memory components in a large FPGA

International Journal of Engineering Research-Online
A Peer Reviewed International Journal

Articles available online http://www.ijoer.in; editorijoer@gmail.com

Vol.5., Issue.3, 2017

May-June

235 B.RAJ KUMAR, B.N.S MUNDA

with a single BIST configuration. All Xilinx FPGAs

support boundary-scan with facilities for access to

the FPGA core logic and this enabled usage of

boundary-scan signals for downloading, running and

controlling the BIST. This provides a common

interface for BIST independent of the package being

tested. Due to lack of access to the FPGA core by the

boundary scan in Atmel devices, different I/O pins

had to be used in different packages for running

BIST. Atmel SoCs support writing into FPGA

configuration memory but do not support reading of

configuration memory or reading the contents of

storage elements in the device. As a result, ORAs

were required to be configured as a scan chain to

shift out the results after running BIST. The length of

the frames varies with the device and typically

contains a few hundreds bits. Although Xilinx FPGAs

have read-back capability, the rame-level

segmentation makes read-back complicated, as post

processing of results read back is required to extract

the exact ORA data and, therefore, doesn't reduce

testing significantly.

Figure 5: Schematic of ORA & RUT

4.1 Memory With Out Faults:

When data writing into the memory

4.2 Memory with faults:

5. Conclusions & Future scope

 BIST configurations for testing memory

components in commercially available FPGAs and

SoCs are presented in this paper. Two different

approaches were followed for developing BIST

configurations to separately deal with two

important features: portability of BIST development

and testing time. BIST configurations developed

were used to test memory components in AT40K

series FPGAs and AT94K series SoCs from Atmel and

Spartan II, Virtex II series FPGAs and SoCs from

Xilinx. A summary of the paper, observations made

during BIST development and suggestions for future

research.

 To conclude the paper, a few suggestions for

improvements in the current BIST approach and also

some areas that can be explored are discussed.

Comparison with adjacent elements detects all

possible faults in the RAMs except for the case

where all elements have equivalent faults but fails

to uniquely diagnose the results in cases where

three or more adjacent elements being compared

have equivalent faults. Comparison with adjacent

elements was preferred over expected data

comparison in some cases in this paper as the latter

approach consumed more logic and routing

resources and did not fit in some devices. Virtex II

Pro SoCs have embedded Power PC microprocessors

similar to the If a slice can be modeled using VHDL in

such a way that the tool recognizes the model as a

slice, BIST development can be reduced significantly

by following the approach used for LUT RAM testing

and logic BIST can be designed using VHDL alone

and by controlling the physical placement of logic

blocks and ORAs.

Bibliography

[1]. Arnaldo,B., “Systems on Chip: Evolutionary

and Revolutionary Trends", 3rd International

International Journal of Engineering Research-Online
A Peer Reviewed International Journal

Articles available online http://www.ijoer.in; editorijoer@gmail.com

Vol.5., Issue.3, 2017

May-June

236 B.RAJ KUMAR, B.N.S MUNDA

Conference on Computer Architecture

(ICCA'02), pp: 121-128, 2009.

[2]. J. Becker, “Configurable Systems-on-Chip

(CSoC)", Proc. IEEE Integrated Circuits and

Systems Design Symposium, pp: 379-384,

2002.

[3]. M. Rabaey, “Experiences and Challenges in

System Design", Proc. IEEE Computer Society

Workshop, pp: 2-4, 2010.

[4]. J. Becker and M. Vorbach, “Architecture,

Memory and Interface Technology

Integration of an Industrial/Academic

Configurable System-on-Chip (CSoC)", Proc.

IEEE. Computer Society Annual Symposium,

pp: 107-112, 2009

[5]. S. Knapp and D. Tavana, “Field Configurable

System-On-Chip Device Architecture", Proc.

IEEE Custom Integrated Circuits Conference,

pp: 155-158, 2000.

[6]. K. Kawana, H. Keida, M. Sakamoto, K. Shibata

and I.Moriyama, “An Effcient Logic Block

Interconnect Architecture for User-

Reprogrammable Gate Array", Proc. IEEE

Custom Integrated Circuits Conference,

[7]. H. Verma, “Field Programmable Gate Arrays",

IEEE Potentials, Vol. 18, No. 4, pp: 34-36,

[8]. S.J.E Wilton, “Embedded Memory in FPGAs:

Recent Research Results", Proc. IEEE Pacific

Rim Conference, pp: 292-296.

[9]. S.J.E. Wilton, “Implementing Logic in FPGA

Memory Arrays: Heterogeneous Memory

Architectures", Proc. IEEE Field-

Programmable Technology, pp: 142-147,

2002.

[10]. “International Technology Roadmap For

Semiconductors (ITRS) 2000 Update.

Technical Report", ITRS, 2000.

[11]. V. Ratford, “Self-Repair Boosts Memory SoC

Yields", Integrated System Design, Sept 2001.

[12]. A. Benso, S. Carlo, G. Natale, P. Prinetto, and

M. Bodoni, “Programmable Built-in Self-

Testing of Embedded RAM Clusters in

System-on-Chip Architectures", IEEE

Communications Magazine, Vol. 41, No. 9,

pp: 90-97, Sept 2003

