## International Journal of Engineering Research-Online A Peer Reviewed International Journal Articles available online <u>http://www.ijoer.in;</u> editorijoer@gmail.com

Vol.5., Issue.3, 2017 May-June

### **RESEARCH ARTICLE**



ISSN: 2321-7758

## $\beta_2$ NEAR SUBTRACTION SEMIGROUP

P. ANNAMALAI SELVI<sup>1</sup>, R. SUMITHA<sup>2</sup>, S. JAYALAKSHMI<sup>3</sup>

<sup>1,2</sup>Research Scholar, <sup>3</sup>Associate Professor Sri Parasakthi College for Women,Courtallam.
<sup>1</sup>ananya2015.as@gmail.com, <sup>2</sup>tneb1977@gmail.com, <sup>3</sup>jayarajkutti@gmail.com



### ABSTRACT

In this paper we introduce the notation  $\beta_2$  near subtraction semigroup and study some of their properties.

Key words: Completely semiprime, ideal, regular.

### 1. Introduction

B.M.Schein [7] considered systems of the form (X; o;/), where X is a set of functions closed under the composition "o" of functions (and hence (X; o) is a function semigroup) and the set theoretic subtraction "/" (and hence (X;/) is a subtraction algebra in the sense of [1]). He proved that every subtraction semigroup is isomorphic to a difference semigroup of invertible functions. B.Zelinka [10] discussed a problem proposed by B.M.Schein concerning the structure of multiplication in a subtraction semigroup. He solved the problem for subtraction algebras of a special type, called the atomic subtraction algebras. For basic definition one may refer to Pilz [6]. In near rings the notation of  $\beta_2$ introduced by Sugantha et al [8]. Motivated by this concept, we introduced  $\beta_2$  nearsubtraction semigroups. (i.e.,) Let X be a right near subtraction semigroup. If for every x,y in X, xXy = xyX we say  $\beta_2$ near subtraction semigroup. Also we distinguish them by characterizing separately. Throughout this paper X stands for a right near subtraction semigroup with atleast two elements.

### 2. PRELIMINARY CONCEPTS AND RESULTS

**Definition:2.1** A nonempty set X together with binary operations "–" and is said to be subtraction algebra if it satisfies the following:

(i) x - (y - x) = x.

(ii)x - (x - y) = y - (y - x).

(iii)(x-y)-z=(x-z)-y, for every  $x,y,z \in X$ .

**Definition:2.2** A nonempty set X together with two binary operations "-" and " $\bullet$ " is said to be a subtraction semigroup if it satisfies the following:

- (i) (X,-)is a subtraction algebra.
- (ii) (X,●)isasemigroup.

(iii) x(y-z)=xy-xz and (x-y)z=xz-yz, for every  $x,y,z \in X$ .

**Definition:2.3** A non empty set X together with two binary operations "–" and "•" is said to be a near subtraction semigroup (right) if it satisfies the following:

- (i) (X,-)isasubtractionalgebra.
- (ii) (X,•)isasemigroup.

(iii) (x - y)z = xz - yz, for every  $x, y, z \in X$ .

**Remark:2.4** The symbol X stands for a near subtraction semigroup  $(X, -, \bullet)$  with at least two elements. We write xy for x.y for any two elements x, y of X. It is clear that 0.x = 0, for every  $x \in X$ . It can be easily proved that x - 0 = x and 0 - x = 0, for all  $x \in X$ .

#### Definition:2.5

(i)  $X_0 = \{n \in X / n0 = 0\}$  is called the zero-symmetric part f X.

(ii)  $X_c=\{n \in X / n0 = n\} = \{n \in X / nn' = n, \text{ for all } n' \in X\}$ is called the constant part of X.

(iii) X is called zero-symmetric, if  $X = X_0$ .

(iv) X is called constant, if  $X = X_c$ .

(v)  $X_d = \{n \in X / n(x - y) = nx-ny, \text{ for all } x, y \text{ in } X\}$  is the set of all distributive elements of X.

(vi) A near subtraction semigroup X is called distributive, if  $X = X_d$ .

# International Journal of Engineering Research-Online

A Peer Reviewed International Journal Articles available online <u>http://www.ijoer.in;</u> editorijoer@gmail.com

### Notations: 2.6

- (1) E denotes the set of all idempotent of X.
- (2) L denotes the set of all nilpotent elements of X.
- (3) If A is any non empty subset of X, then  $A^* = A - \{0\}.$

(4) C(X) denotes the centre of X.

(5)  $C(a) = \{n \in X / an = na\}.$ 

(6)  $X^* = X - \{0\}$ 

**Definition:2.7** An element  $e \in X$  is said to be idempotent if  $e^2 = e$ .

**Definition:2.8** An element  $a \in X$  is said to be central if ax = xa.

**Definition: 2.9** An element  $x \in X$  is said to be nilpotent if there exists positive integer n such that x<sup>n</sup>=0.

Definition:2.10 A near subtraction semigroup X is said to be (\*, IFP) provided for all a, b, n in X, if ab = 0 then anb = 0.

Notation:2.11 If A and B are any two subsets of X, then AB =  $\{ab / a \in A \text{ and } b \in B\}$  and A\*B =  $\{a(a'-b)\}$  $-aa' / a, a' \in A and b \in B$ .

Definition:2.12 A nonempty subset S of a subtraction semigroup X is said to be a subalgebra of X, if  $x-x' \in S$  whenever  $x, x' \in S$ .

Definition:2.13 A near subtraction semigroup X is said to be property p<sub>4</sub> if for all ideals I of X and for all x,y in X

Definition:2.14 A subtraction semigroup X is said to beIFP (intersection of factors property) if for a,b in X if ab = 0 implies axb = 0, for all  $x \in X$ .

Result:2.15 A near subtraction semigroup X has no non-zero nilpotent elements if and only if  $x^2 = 0 \Rightarrow$ x = 0, for all x in X.

**Definition: 2.16** If X satisfies (i)  $xy = 0 \Rightarrow yx = 0$ , for all x,y in X (ii) X has IFP then X is said to have (\*, IFP). Definition:2.17 A near subtraction semigroup X is regular if for every x in X there is some y in X such that x = xyx.

Definition:2.18 A nonempty subset I of X is called (i) A left ideal of X if  $x-y \in I$  and  $x \in I$  and  $y \in X$  and XI⊂I

(ii) A right ideal of X if  $x-y \in I$  and  $x \in I$  and  $y \in X$  and IX⊂ I.

(iii) An ideal of X if I is both left and right ideal of X. Definition:2.19 Let P be an ideal of X. P is called

(i) a prime deal if for all ideal I,J of X,  $IJ \subseteq P$  then  $I \subseteq P$ or  $J \subseteq P$ .

(ii) a completely prime ideal , if for any ab in X,  $ab \in P$ then either  $a \in P$  or  $b \in P$ .

### 3. $\beta_2$ near subtraction semigroup

In this section we define  $\beta_2$  near subtraction semigroup and give certain examples of these new concepts.

Definition:3.1. Let X be a right near subtraction semigroup. If for every x,y in X, xXy = xyX we say  $\beta_2$ near subtraction semigroup.

**Example:3.1.1** Let  $X=\{0,a,b,c\}$  in which '-' and ' $\bullet$ ' is defined as follows

| - | 0 | a | b | 1 | • | 0 | a | b | 1 |
|---|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| a | a | 0 | a | 0 | a | 0 | a | b | 1 |
| b | b | b | 0 | 0 | b | 0 | 0 | 0 | 0 |
| 1 | 1 | b | a | 0 | 1 | 0 | a | b | 1 |

Obviously  $(X, -, \bullet)$  is a  $\beta_2$  near subtraction semigroup.

Theorem:3.2 Let X be a  $\beta_2$  near subtraction semigroup. If X has identity 1, then X is zero symmetric.

**Proof:** Let X be a  $\beta_2$  near subtraction semigroup. Then for all x,y in X, x.Xy = xyX Putting x = 1,

we get 1X y = 1yX, for all y in X. (ie) Xy = yX, for all y in X. When y = 0,  $X = 0X = \{0\}$ . It follows that X is zero-symmetric.

**Remark:3.2.1** The converse of above theorem is not valid

**Example:3.2.2** Let  $X=\{0,a,b,c\}$  in which '-' and ' $\bullet$ ' is defined as follows

| - | 0 | a | b | с | • | 0 | a | b | с |
|---|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| a | a | 0 | a | 0 | a | 0 | a | 0 | a |
| b | b | b | 0 | 0 | b | 0 | 0 | 0 | 0 |
| с | с | b | a | 0 | с | 0 | a | 0 | a |

This is a zero-symmetric  $\beta_2$  near subtraction semigroupBut it has no identity.

**Theorem:3.3** If X is a  $\beta_2$  near subtraction semigroupxXx=  $x^2X$ , for all xin X.

**Proof:** When X is a  $\beta_2$  near subtraction semigroup xXy = xyX------(\*). The results follows by replacing y by x in equation (\*).

Remark:3.3.1 The converse of the above theorem is not true.

**Example:3.3.2** Let  $X=\{0,a,b,c\}$  in which '-' and '•' is defined as follows

## International Journal of Engineering Research-Online

*A Peer Reviewed International Journal* Articles available online <u>http://www.ijoer.in;</u> editorijoer@gmail.com

| - | 0 | a | b | с | • | 0 | a | b | с |
|---|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| a | a | 0 | a | 0 | a | a | a | a | a |
| b | b | b | 0 | 0 | b | 0 | a | b | с |
| с | с | b | a | 0 | с | a | 0 | с | b |

The near subtraction semigroup satisfies the condition  $xXx = x^2 X$  for all x in N. But it is not  $\beta_2$  near subtraction semigroup.  $yXx \neq yxX$ .

**Theorem : 3.4** Let X be a zero-symmetric,  $\beta_2$  near subtraction semigroup with regular. Then we have

(i) L = { 0 }

(ii) X has {\* , IFP}

(iii)  $E \subseteq C(X)$  if  $E \subseteq X_d$ 

(iv) Any ideal of X is completely semiprime.

(v) X has property  $P_4$ .

**Proof:** (i) Since X is regular, By theorem 3.3 demands that  $x \in xXx_{=} x^{2} X$ , for all x in X. Therefore  $x = x^{2}n$ , for all n in X. Suppose  $x^{2} = 0$ . Clearly x = 0. Hence  $L = \{0\}$ 

(ii) By (i), L = {0}. Since X is zero-symmetric, X has {\*, IFP}.

(iii) Let  $e \in E$ , since X is  $\beta_2$  near subtraction semigroup. eXe = eeX = eX. Therefore for any x in X, ene = eu and en = eve, for some u, v in X.

Now ene = evee. Thus ene = eve = en, for all n in X ------(1)

Since  $E \subseteq X_d$  and  $X = X_0$ , e(ne - ene) = 0 and ne (ne - ene) = n0 = 0.

This implies that ene (ne – ene ) = 0. ne (ne – ene ) = e ne (ne – ene ) = 0

Consequently  $(ne - ene)^2 = 0$ .

(i) guarantees that (ne - ene) = 0 -----(2)

Therefore ene = ne, for all n in X .From equation (1) and (2), we get ne = ene, for all n in X . Thus  $E \subseteq C(X)$ (iv) Let I be an ideal of X. Then IX  $\subseteq$  I ------ (3) and let  $a^2 \in I$ , for some a in X. Since X is regular, for

all a in X. a = axa. Then a  $\in$  aXa. Since X is a  $\beta_2$  near

subtraction semigroup,  $a \in a^2 X$ .

But  $a^2X \in IX \subset I$  (by equation (3)). Therefore  $a \in I$ . Consequently I is completely semi prime.

(v) Let I be an ideal of X. Then  $IX \subseteq I$  ------ (4)

Since X is zero-symmetric,  $XI \subseteq I$  ------ (5)

Let  $x y \in I$ . Now  $(yx)^2 = (yx)y(x) = y(xy) x \in XIX \subseteq I$  (By equation (5)).

By equation(4),  $(yx)^2 \in I$ . Using (iv), we get  $yx \in I$ . Consequently X has property  $P_4$ .

### ACKNOWLEDGEMENT

The authors wish to thank referees for their valuable suggestions.

Vol.5., Issue.3, 2017

**May-June** 

### REFERENCES

- J. C. Abbott, Sets, Lattices, and Boolean Algebras, Allyn and Bacon, Inc., Boston, Mass.1969.
- [2]. P.Dheena and G.Satheesh Kumar,On strongly regular near subtraction semigroups, commun.Korean Math. Soc. 22(2007), No.3, pp. 323-330.
- [3]. Y. B. Jun and H. S. Kim, On ideals in subtraction algebras, Sci. Math. Jpn. 65(2007), no.1, 129-134.
- [4]. K.H.Kim, On Subtraction Semigroups, Scientiae Mathematicae Japanicae 62(2005), no 2, 273-280.
- [5]. Pilz Gunter, Near-rings, North Holland, Amsterdam, 1983.
- [6]. B. M. Schein, Difference semigroups, Comm. Algebra 20 (1992), no. 8, 2153-2169.
- [8]. S.Uma, R. Balakrishnan, T. Tamizhchelvam,  $\alpha_1, \alpha_2$  Near-Rings, International Journal of Algebra, Vol.4, 2010, no. 2, 71-79.
- [9]. B. Zelinka, Subtraction semigroups, Math. Bohem. 120 (1995), no. 4, 445-447.

