EPSDIC-2016

ISSN: 2321-7758

LINEAR CORRELATION ANALYSIS AND CONTOUR MAPS- STUDY OF GROUND WATER QUALITY OF BUTTAYAGUDEM MANDAL WESTGODAVARI DISTRICT, ANDHRAPRADESH, INDIA

Dr.NVVS PRASAD, Dr.HARINADHA BABU, Dr.C.RAVI³ B.RANJITH KUMAR⁴, D.CHOWDESWARI⁵, M.ANAND KUMAR⁵

¹Reader in chemistry, Sir C R Reddy (A) College, Eluru ²Professor, Dept. of civil engineering, Sir C R Reddy college of Engineering, Eluru ³Reader in Geology, Sir C R Reddy (A) College, Eluru

⁴Junior Research Fellow, DST Project, Sir C R Reddy Educational Institutions, Eluru

⁵Assistant Professor Department of Chemistry, Sir C R Reddy college of Engineering, Eluru

ABSTRACT

Buttayagudem mandal lays in northern part of the west godavari district of AP. Ground water is the only source for drinking as well as irrigation.18 samples were collected from the Mandal and drinking water quality parameters like pH, turbiditry, TDS, TH, TA, chloride, fluoride, nitrite, sulphate, sodium, potassium, calcium ,magnesium ,iron, DO,BOD and COD were determined. The results were compared with ICMR standards of water quality. Correlation coefficients were determined, which give hydro chemical relation among different chemical parameters. Contour maps which give geographical view of the study area were also prepared . Keywords: Ground water, water quality, correlation coefficient matrix , contour maps.

1.Introduction

water is the god's wonderful gift to the all living beings. Different types of water sources are available in the form of rainwater, rivers, seas, ground water. But 97% of water exists in the form of seas, which is unfit for hum activities. Only 3% of water is available to the humans in the form of rivers, lakes and ground water. This 3% is not enough for human activities but we don't have other choice so we should properly use and protect available water sources. In the present world for all economical activities i.e agriculture ,industries, fisheries, ground water is a major source, lack of awareness about importance of water to the people, they were polluting the water through different activities due to this reason different chemical parameters concentration were crossing the defined limits, this is not good for human health therefore suitability of water sources for human consumption has been described on the basis of WHO and ICMR guide lines. The main aim of present work is to assess the quality of ground water for human consumption on the basis of correlation coefficient data analysis.

2.Study Area

The West godavari district consists of 46 mandals out of which 24 mandals are upland areas and 22 mandals are delta areas. One upland mandal , Buttayagudem is selected for the analysis of various parameters of ground water samples seasonally . Buttayagudem is located in between 17.18358 to 17.31718 North latitude and 81.25935 to 81.45478 East longitude.

International Journal of Engineering Research-Online A Peer Reviewed International Journal Email:editorijoer@gmail.com <u>http://www.ijoer.in</u> ISSN: 2321-7758

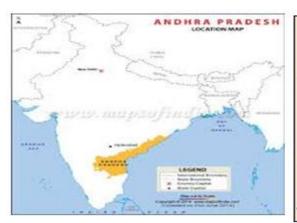


Figure 1-view of AP in india

Figure 3-view of Mandals in westgodavari map

Figure 2-view of districts in AP

Figure 4-Buttayagudem Mandal map

3 Methodology:

All physical, chemical and biological parameters of ground water sample were determined by adopting standard analytical methods which are listed below.

S.NO	PARAMETERS	STANDARD ANALYTICAL METHODS
1	РН	Eutech- 2700 pH meter
2	EC	Systronics-304 EC meter
3	TDS	Eco tester TDS low meter
4	Turbidity, sulphate	Nephaloturbidity-132
5	Alkalinity	Volumetrically byH2SO4
6	TH,Ca+2,Mg+2	Complexometrically by EDTA
7	Sodium, potassium	Flame photometer-127
8	Chloride ,fluoride	Ion slectivity meter-eutech 2700
9	Iron, phosphate, nitrite	Visible spectrophotometer
10	DO,BOD,COD	Standard methods

International Journal of Engineering Research-Online A Peer Reviewed International Journal Email:editorijoer@gmail.com <u>http://www.ijoer.in</u> ISSN: 2321-7758

PARAMETER	MIN	ΜΑΧ	MEAN	SD	CVR	
РН	6.08	7.94	6.961111	0.488694	7.020351	
EC	200	1500	655.5556	385.3527	58.78262	
TDS	128	960	419.5556	246.6258	58.78262	
TURBIDITY	0	2	0.222222	0.548319	246.7435	
ALKALINITY	70	430	211.8889	126.5719	59.73506	
тн	55	280	136.6667	67.16967	49.14854	
SODIUM	3.8	70	27.33889	67.16967	91.34056	
POTASSIUM	2	15.5	5.122222	67.16967	69.58489	
CALCIUM	6	62	26.11111	67.16967	66.01951	
MAGNESIUM	4.87	45.07	17.39	67.16967	59.13791	
CHLORIDE	0.597	70.33	16.09189	67.16967	113.3077	
FLOURIDE	0.066	0.599	0.2184	67.16967	68.10012	
SULPHATE	6	82	34.05556	67.16967	62.94988	
DO	3.6	9.2	5.377778	67.16967	31.26906	
COD	1.4	25.6	19.69444	67.16967	26.34385	
BOD	0.8 3.2		1.677778	67.16967	40.71066	

Table 1- Normal statistics of ground water samples in rainy season

Table 2- Normal statistics of ground water samples in winter season

PARAMETER	MIN	MAX	MEAN	SD	CVW	
РН	6.83	7.9	7.274444	0.35472	4.876246	
EC	200	1300	638.8889	308.962	48.35927	
TDS	128	832	408.8889	197.7357	48.35927	
TURBIDITY	0	20	1.277778	4.687977	366.8851	
ALKALINITY	122	464	238.6667	115.2511	48.28958	
тн	60	270	146.9444	62.61786	42.61329	
SODIUM	1	84	35.5	29.97499	84.43659	
POTASSIUM	2	12	5.788889	3.21099	55.46816	
CALCIUM	14	70	32.88889	15.49531	47.11411	
MAGNESIUM	0	49.94	15.76667	11.02561	69.92987	
CHLORIDE	1.63	244	58.70389	64.74616	110.2928	
FLOURIDE	0.147	1.15	0.457444	0.321617	70.3074	
SULPHATE	4	82	29.5	21.0245	71.26948	
DO	3.6	4.8	4.288889	0.330577	7.70775	
COD	0	84.8	13.77778	19.03568	138.1622	
BOD	1.2	3.6	2.377778	0.589671	24.79927	

PARAMETER	MIN	MAX	MEAN	SD	CVS		
РН	6.67	8.09	7.236111	0.393956	5.444311		
EC	200	1400	611.1111	351.2815	57.48243		
TDS	128	896	391.1111	224.8202	57.48243		
ALKALINITY	62	410	187.5556	111.1344	59.25411		
тн	55	435	151.1111	94.39522	62.46742		
SODIUM	M 11 94		46.22222	26.78796	57.95472		
POTASSIUM	0.2	8	3.311111	2.335629	70.53913		
CALCIUM	14.03	84.17	36.40556	22.24395	61.10043		
MAGNESIUM	4.87	54.81	14.68278 11.49057		78.25884		
CHLORIDE	4.02	174	37.45222	45.5488	121.6184		
FLOURIDE	0.206	1.34	0.553128	0.319498	57.76204		
SULPHATE	9	80	28.05556	18.20301	64.88203		
DO	2.8	5.6	3.977778	0.75736	19.03979		
COD	0	57.6	19.28889	25.69671	133.2203		
BOD	1.2	3.2	2.044444	0.492559	24.09256		

Table 3- Normal statistics of ground water sample in summer season

Degree of linear association between any two water quality parameters are measured by the simple correlation coefficient (r). This r value ranging from +1 to-1, if r value is grater than 0 indicates positive linear association, r value is less than 0 indicates negative linear association between any two water quality parameters. The correlation coefficient r value gives us information about sources of dissolved parameters, not only that it also gives information how one parameter vary with another parameters and gives possible combination of dissolved salts.

Table 4- correlation coefficient matrix of water quality parameters in rainy seasons.

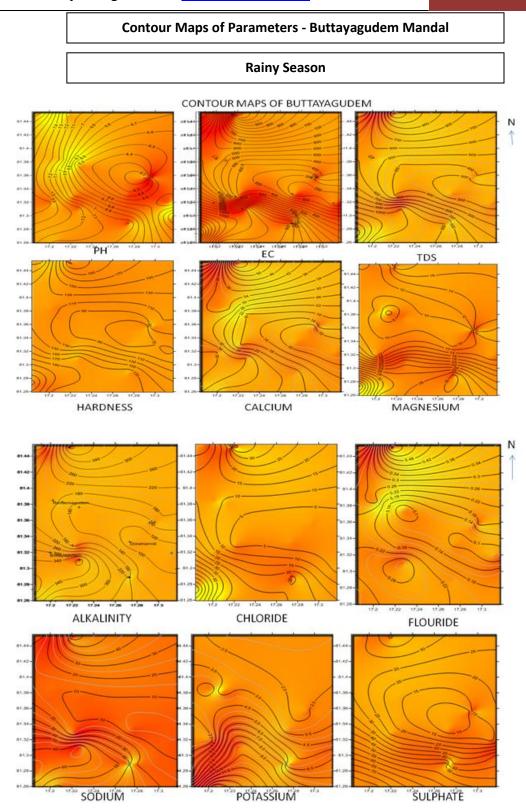
	pН	E.C	TDS	Alkalinity	Hardness	Sodium	Potassium	Calcium	Magnesium	Chloride	Fluoride	Sulphate	DO	COD	BOD
рН	1														
E.C	0.448514	1													
TDS	0.448514	1	1												
Alkalinity	0.447367	0.916952	0.916952	1											
Hardness	0.449018	0.983649	0.983649	0.873748	1										
Sodium	0.488875	0.929536	0.929536	0.922346	0.87702	1									
Potassium	0.06935	0.234169	0.234169	0.077665	0.242465	0.235368	1								
Calcium	0.495887	0.811917	0.811917	0.890756	0.792341	0.747136	-0.06495	1							
Magnesium	0.20819	0.73637	0.73637	0.481011	0.782374	0.63281	0.452135	0.239944	1						
Chloride	0.406072	0.915851	0.915851	0.73902	0.921718	0.78579	0.183792	0.641114	0.812205	1					
Fluoride	0.323558	0.679397	0.679397	0.811082	0.683158	0.645772	-0.08546	0.904777	0.163449	0.460539	1				
Sulphate	0.418012	0.779298	0.779298	0.558182	0.782623	0.694138	0.559418	0.438028	0.798192	0.81125	0.304054	1			
DO	0.234817	0.107318	0.107318	-0.13831	0.144084	0.131393	0.503758	-0.12735	0.359251	0.116068	-0.2237	0.333237	1		
COD	0.0197	0.065186	0.065186	0.045217	0.05784	0.184619	0.24917	-0.1485	0.243628	0.053231	-0.04189	0.159086	0.320246	1	
BOD	-0.25792	-0.04867	-0.04867	-0.27995	-0.0453	-0.06371	0.471859	-0.39045	0.326577	0.041035	-0.31595	0.285714	0.515785	0.179732	1

	pН	E.C	TDS	Alkalinity	Hardness	Sodium	Potassium	Calcium	Magnesium	Chloride	Fluoride	Sulphate	DO	COD	BOD
pН	1														
E.C	0.740099	1													
TDS	0.740099	1	1												
Alkalinity	0.84189	0.864859	0.864859	1											
Hardness	0.684439	0.938423	0.938423	0.837645	1										
Sodium	0.457024	0.501463	0.501463	0.462531	0.403889	1									
Potassium	0.235959	0.285663	0.285663	0.118377	0.053506	0.45959	1								
Calcium	0.499451	0.709915	0.709915	0.517312	0.695303	0.207953	0.244228	1							
Magnesium	0.519385	0.690642	0.690642	0.71607	0.788376	0.380808	-0.13507	0.10601	1						
Chloride	0.430749	0.814728	0.814728	0.563228	0.806705	0.320291	0.040731	0.576423	0.622689	1					
Fluoride	0.598875	0.423081	0.423081	0.652652	0.524749	0.328694	-0.37256	0.112852	0.629425	0.205804	1				
Sulphate	0.541872	0.83448	0.83448	0.541553	0.690664	0.324029	0.565934	0.696968	0.358928	0.717552	-0.02372	1			
DO	-0.00959	0.113907	0.113907	-0.11281	0.209971	0.015435	-0.38471	0.057163	0.24159	0.367986	0.158728	0.096485	1		
COD	0.097585	0.044363	0.044363	-0.13957	0.128594	0.018392	0.08965	0.099625	0.092636	0.101494	-0.22827	0.188251	0.329376	1	
BOD	0.056745	0.560369	0.560369	0.342991	0.584313	0.143104	0.039628	0.301005	0.55074	0.689356	-0.07389	0.511486	0.324565	0.109375	1

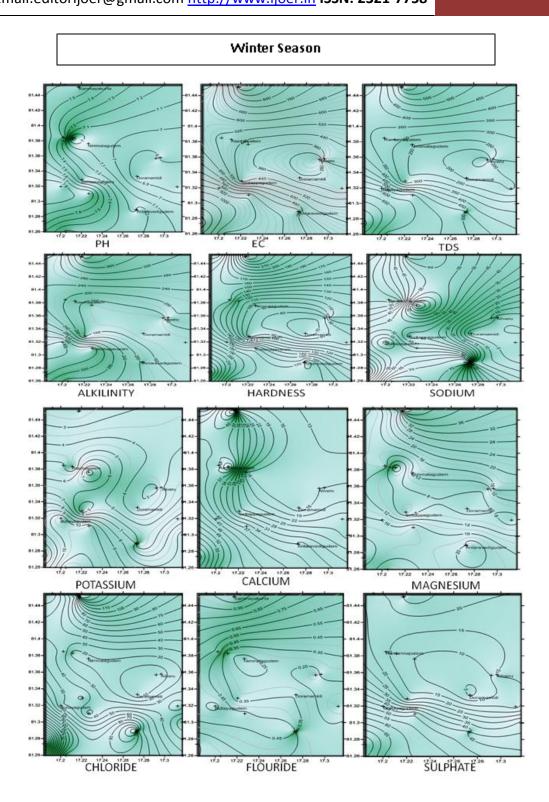
Table 5- correlation coefficient matrix of water quality parameters in winter season

Table 6- correlation coefficient matrix of water quality parameters in summer season

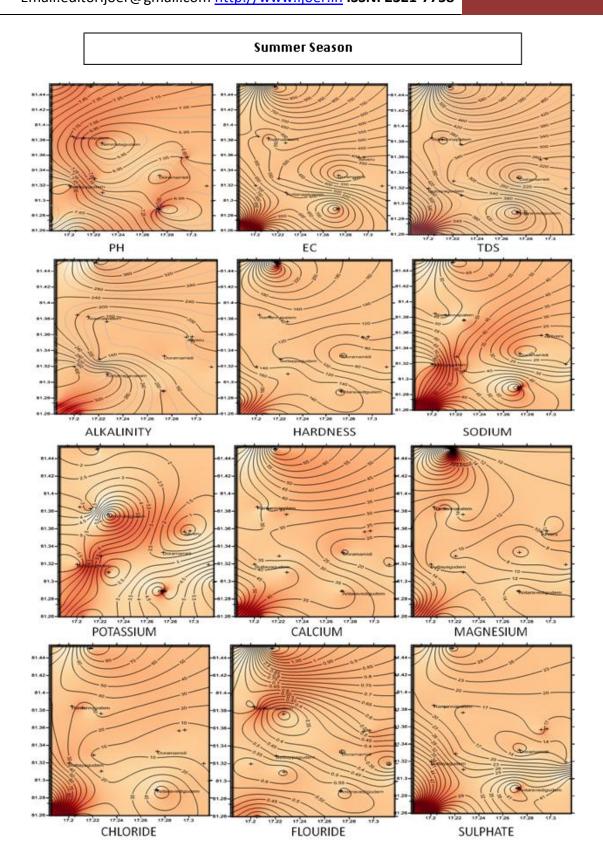
	рН	E.C	TDS	Alkalinity	Hardness	Sodium	Potassium	Calcium	Magnesiu m	Chloride	Fluoride	Sulphate	DO	COD	BOD
рН	1														
E.C	0.040711	1													
TDS	0.040711	1	1												
Alkalinity	0.207886	0.926798	0.926798	1											
Hardness	0.143039	0.892799	0.892799	0.896655	1										
Sodium	0.049639	0.891128	0.891128	0.817145	0.71104	1									
Potassium	-0.23451	0.175495	0.175495	-0.02903	-0.03568	0.480386	1								
Calcium	0.152093	0.939352	0.939352	0.953861	0.932047	0.780474	-0.03712	1							
Magnesium	0.107473	0.681419	0.681419	0.672111	0.904581	0.50456	-0.02785	0.688648	1						
Chloride	0.168918	0.930097	0.930097	0.854669	0.825654	0.770101	0.149275	0.871659	0.626736	1					
Fluoride	0.102181	0.689567	0.689567	0.794337	0.746304	0.539586	-0.27726	0.798142	0.554491	0.521521	1				
Sulphate	0.063439	0.824151	0.824151	0.68549	0.64048	0.821367	0.406342	0.67914	0.482623	0.805709	0.381258	1			
DO	0.095115	-0.68001	-0.68001	-0.61402	-0.54762	-0.50656	0.17839	-0.61809	-0.36865	-0.60406	-0.57463	-0.34808	1		
COD	0.038433	0.062443	0.062443	-0.17222	-0.07066	0.024307	0.36505	-0.08616	-0.04002	0.200413	-0.29028	0.416695	0.180009	1	
BOD	0.438679	-0.52657	-0.52657	-0.39249	-0.37308	-0.56341	-0.30009	-0.34782	-0.3372	-0.42997	-0.1723	-0.49234	0.620928	0.042798	1


The results in table 4 indicate that Ca^{+2} and Mg^{+2} are correlated with TH (r=0.792 and r=0.782 respectively). Cl⁻ and SO₄²⁻ are correlated with Mg (r=0.812 and r=0.798 respectively) which indicates the dissolved salts. TH is strongly correlated with TDS (r=0.90) indicating that hardness causing salts impart more towards TDS.

The correlation coefficient matrix in table 5 indicate that Ca and Mg are correlated with TH (r=0.695 and r=0.788 respectively). Cl⁻ and SO₄²⁻ are correlated with TH (r=0.806 and r=0.690 respectively). Cl⁻ and SO₄²⁻ are also correlated with Ca and Mg.


The results in table 6 show that Ca and Mg are strongly correlated with TH (r>0.9), TH correlated with TDS (r=0.892), Cl is correlated with TH , Ca and Mg and SO4 is correlated with TH and Ca.

International Journal of Engineering Research-Online A Peer Reviewed International Journal


Email:editorijoer@gmail.com http://www.ijoer.in ISSN: 2321-7758

International Journal of Engineering Research-Online A Peer Reviewed International Journal Email:editorijoer@gmail.com <u>http://www.ijoer.in</u> ISSN: 2321-7758

International Journal of Engineering Research-Online A Peer Reviewed International Journal Email:editorijoer@gmail.com <u>http://www.ijoer.in</u> ISSN: 2321-7758

The spatial distribution of pH increased from Northeast and Southeast parts of study area to the west .The spatial distribution of EC, TDS, TH, Alkalinity, Ca^{+2} , Cl^- , Na^+ were similar with lower values in central part of study area and increases in Northwest and Southwest directions. Mg^{+2} which is having low value at Atachaipalem and increases in south direction. The concentration of K⁺ is high at South and decreases towards North.SO₄²⁻ concentration is high at Southwest and decreases towards centre. Flouride concentration had a different distribution, being low value in the centre and its value increases in North direction.

The spatial distribution of pH is similar as in rainy season. The spatial distribution of EC, TDS, TH, Alkalinity were similar with lower values in central part of study area and increases in North, West ,East directions and are mostly concentrated at South west . Na⁺ concentrations were low at Doramamidi and its value increases towards North but at Ramannapalem the concentraion of sodium is high. The distribution of $SO_4^{-2^-}$ increased from Northwest towards Ramannapalem and then decreases .The spatial distribution of Flouride is similar as in rainy season .Concentrations of K⁺ increases from northwest towards south west. Concentrations of Ca⁺² are increased from northeast towards south west . In the central part of study area the concentration of Mg⁺² is low and it increases towards north east. The concentration of Cl⁻ is less in centre part and it increases towards north and south west directions.

The spatial distribution of pH in summer season has slight variation when compare to rainy and winter seasons .It has minimum value at Nimmalagudem and the concentration increases towards southwest direction .The distribution of EC, TDS, TH, Ca⁺² were similar which are having lower values at Doramamidi and increases towards north, south directions. The values of alkalinity decrease as we move towards the centre part of study area .Na⁺ concentration had different distribution, highest value at Buttayagudem and then decreases towards Ramannapalem and then again increases towards north. The Cl⁻ ion concentration is low in the vicinity of Doramamidi and increases towards north and southwest directions. The concentration of SO₄²⁻ is relatively high towards southwest and low in other parts of study area

Conclusions

The quality of ground water samples collected from Buttayagudem mandal in three seasons were analysed and studied . Based on these analytical studies we may conclude that the values of all parameters in three seasons are in permissible limits. On the basis of correlation we may conclude that there is a strong relation between total hardness and TDS . The hardness producing ions Ca^{+2} and Mg^{+2} are strongly correlate with chloride and sulphate which indicates it has permanent hardness .Contour maps are also included in this research paper which gives the spatial distribution of various parameters in three seasons in study area.

Acknowledgement: The authors are thankful to SIR CR REDDY group of educational institutions ,Eluru provide necessary infrastructure to complete this research work.

References:

- Wu, J.H.; Li, P.Y.; Qian, H.; Duan, Z.; Zhang, X.D. Using correlation and multivariate statistical analysis to identify hydrogeochemical processes affecting the major ion chemistry of waters: a case study in Laoheba phosphorite mine in Sichuan, China. *Arab. J. Geosci.* 2013, doi:10.1007/s12517-013-1057-4.
- [2]. Li, P.Y.; Qian, H.; Wu, J.H. Hydrochemical characteristics and evolution laws of drinkinggroundwater in Pengyang County, Ningxia, Northwest China. *E J. Chem.* 2011, *8*, 565–575.
- [3]. Voudouris, K.; Panagopolous, A.; Koumanatakis, J. Multivariate statistical analysis in theassessment of hydrochemistry of the Northern Korinthia Prefecture alluvial system (Peloponnese, Greece). Nat. Resour. Res. 2000, 9, 135–146.
- [4]. Xuedi Zhang, Hui Qian, Jie Chen, and Liang Qiao Assessment of ground water chemistry and status in a Heavily used semi-Arid Region With Multivariate statistical analysis Water 2014,6,2212-2232;doi:10.3390/w6082212.