Vol.4., Issue.6., 2016 Nov-Dec.

RESEARCH ARTICLE

ISSN: 2321-7758

DESIGN AND ANALYSIS OF AN AIR DISTRIBUTION SYSTEM FOR A MULTI-STORY BUILDING

MUDEDLA YAMINI¹, NERUSU KIRANMAYEE²

¹M Tech Thermal (14NH1D2104) Department of Mechanical Engineering, V K R & V N B College of Engineering, Gudiwada, Andhra Pradesh, India

²Assistant Professor, Mechanical Engineering, V K R & V N B College of Engineering Gudiwada, Andhra Pradesh, India.

MUDEDLA YAMINI

ABSTRACT

Earlier the use of air conditioning for comfort purpose was considered to be expensive, but now-a-days, it has been a necessity for all human beings. Window air conditioners, split air conditioners are used in small buildings, offices etc. But, when the cooling load required is very high such as big buildings, multiplex, multi-story buildings, hospitals etc. centralized unit (central air conditioners) are used. The central AC's systems are installed away from building called central plant where water or air is to be cooled. This cooled air is not directly supplied to the building rooms. When the cooled air cannot be supplied directly from the air conditioning equipment to the space to be cooled, then the ducts are provided. The duct systems carry the cooled air from the air conditioning equipment for the proper distribution to rooms and also carry the return air from the room back to the air conditioning equipment for recirculation. When ducts are not properly designed, then it will lead to problem such as frictional loss, higher installation cost, increased noise and power consumption, uneven cooling in the cooling space. For minimizing this problem, a proper design of duct is needed. Equal friction method is used to design the duct, which is simple method as compared with the other design methods. These work gives the combination of theoretical and software tool to provide a comparative analysis of the duct size. It also gives the comparison between rectangular duct and circular duct.

Keywords: Friction, Ductulator, Criteria, Dehumidified

©KY PUBLICATIONS

INTRODUCTION

In the present day, as the population increases the need for comfortness also increases. The human being needs more comfortness because of inferior environment (like light, sound, machine which produce heat). Sound, light and heat affect human comfort a lot. They may adversely affect the human comfort positively or negatively. Researchers suggest that, human body is used to be comfortable at a temperature of 22°C to 25°C. When the temperature of room is lower or higher than this temperature, than the human body feels uncomfortable. This is because, the human body is structured in a way that, it should receive a certain amount of light, failure to which it can cause sunburns and other skin conditions. Articles available online http://www.ijoer.in; editorijoer@gmail.com

There are many types of air conditioning system like window air conditioners, split air conditioners etc. but these AC's system are used in small room or office where cooling load required is low. When the cooling load required is very high like multiplex building, hospital etc. central AC's system are used. In central AC's system the cooled air is directly not distributed to the rooms. The cooled air from the air conditioning equipment must be properly distributed to rooms or spaces to be cold in order to provide comfort condition. When the cooled air cannot be supplied directly from the air conditioning equipment to the spaces to be cooled, then the ducts are installed. The duct systems convey the cold air from the air conditioning equipment to the proper air distribution point and also carry the return air from the room back to the air conditioning equipment for reconditioning and recirculation.

As the duct system for the proper distribution of cold air, costs nearly 20% to 30% of the total cost of the equipment required. Thus, it is necessary to design the air duct system in such a way that the capital cost of ducts and the cost of running the fan is lower.

Classification of ducts

- a) Supply air duct
- b) Return air duct
- c) Fresh air duct
- d) Low pressure duct
- e) Medium pressure duct
- f) High pressure duct
- g) Low velocity duct
- h) High velocity duct

Duct Material

The ducts are usually made from galvanized iron sheet metal, aluminium sheet metal or black sheet. The most commonly used duct material in the air conditioning system is galvanized sheet metal, because the zinc coating of this metal prevents rusting avoids the cost of painting. The sheet thickness of galvanized iron duct varies from 0.55 mm to 1.6 mm. The aluminium is used because of its lighter weight and resistance to moisture.

The use of non-metal ducts has increased. The resin bounded glasses are used because they are quite strong and easy to manufacture according to the desired shape and size. They are used in low velocity application less than 600 m/min and for a static pressure below 5 mm. Various shapes of duct

- a) Circular/round duct:
- b) Rectangular duct:
- c) Flat oval duct:
- d) Flexible duct:

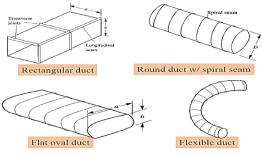


Figure 1: Various shapes of duct

Fan Coil Unit (FCU) A fan coil unit (FCU) is a device consisting of a cooling or heating coil and fan. It is a part of the heating ventilation and air conditioning system used to circulate the cold water into the room. In FCU no need to ductwork and it is used to govern the temperature in the region where it is fitted. It is controlled by either physically or by a regulator.

Fan coil units (FCU) are normally used in places where economic installations are desired such as storage rooms, loading docks and corridors. In high-rise buildings, fan coils may be arranged, situated one above the another from floor to floor and all interrelated by the same tubing loop. FCUs are an admirable delivery apparatus for hydraulic chiller boiler systems in large housing and light profitable applications. In these applications the FCUs are mounted in bathroom ceilings and can be used to provide infinite comfort zones - with the facility to turn off vacant areas of the building to save energy.

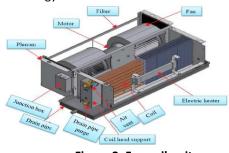


Figure 2: Fan coil unit

Air Handling Unit (AHU) - Air handling unit (AHU), is a device used to circulate the air as part of a heating, ventilating, and air-conditioning (HVAC) system. An air handling unit is usually a big metal box having a blower, chambers, heating or cooling elements, dampers and sound attenuators. AHU generally connect to a ductwork ventilation system that allocates the cooled air through the house or rooms and takings it to the AHU.

Air handling components

- a) Filters
- b) Heating or cooling elements
- c) Humidifier
- d) Blower or fan

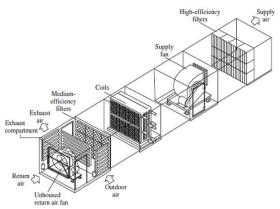


Figure 3: Air Handling Unit

PROCEDURE

This project gives the fundamental principles of duct or air distribution system design for a multistory building. There are mainly three types of duct sizing method namely

- (i) equal friction method,
- (ii) modified friction method (static regain method) and
- (iii) Velocity reduction method.

Now a days, the use of manual duct calculator is normal and computer aided duct design is becoming more popular. Also understanding the friction chart is very important to use this manual duct calculator, because these are the foundations of the other methods. This will provide the necessary knowledge to the duct design error and overcome to the errors.

For designing a proper duct system, it is necessary to estimate cooling load which is used to select the zone and air flow rate that the duct system distributes. Once the air flow rate is determined, the duct system component can be placed. This includes the supply and returns diffusers and decides to air handling unit (AHU) or fan coil unit (FCU) is good for that space.

General rules for duct design

- Air should be conveyed as directly as possible to economize on power, material and shape.
- b) Sudden change in direction should be avoided.
- c) Air velocities in ducts should be within the permissible limits to minimize losses.
- Rectangular ducts should be made as nearly square as possible. This will ensure minimum ducts surface. An aspect ratio of less than 4:1 should be maintained.
- e) Damper should be provided in each branch outlet for balancing the system.

Duct Design Criteria

Many factors are considered when designing a duct system. They are as follows

- a) Space availability
- b) Installation cost
- c) Air friction loss
- d) Noise level
- e) Duct heat transfer and airflow leakage

Pressure in Duct

The flow of air within a duct system is produced by the pressure difference existing between the different locations. The greater the pressure difference, the faster the air will flow. The following are the three types of pressures involved in a duct system.

Static Pressure (Ps)

Velocity Pressure (Pv)

Total Pressure (Pt)

Total Pressure (Pt)

It is the algebraic sum of the static pressure and dynamic pressure.

$$P_t = P_s + P_v$$

P_t= Total pressure, Pa

P_s = static pressure, Pa (measured by any pressure measuring instrument)

 P_v = velocity pressure

$$= \frac{p V^2}{2}$$
, (for air ρ =1.024kg/m3)
= 0.602V²

V = fluid mean velocity, m/s = $\frac{Q}{A}$ Where, Q = air flow rate, m³/sec A = cross sectional area, m² Pressure Losses in Ducts

Pressure is lost due to friction between the moving particle of the fluid and the interior surfaces of a duct. When the pressure loss occurs in a straight duct, then this loss is known as friction loss. The pressure loss is due to the changes of direction of air flow such as bends, elbows etc. and at the change of cross section of the duct, this loss is known as dynamic losses.

Pressure Loss due to Friction in Ducts

The pressure loss due to friction in ducts may be obtained by using the Darcy's formula, i.e.

$$\mathsf{P}_{\mathsf{f}} = \frac{fLp_a V^2}{2D_h}$$

Where

 P_f = pressure loss due to friction in N/ m^2

L = length of the duct in meters

f = friction factor depending upon the surface of the duct

 P_a = density of air in kg/ m^3

V = mean velocity of the air flowing through the duct in m/s

 D_h = hydraulic diameter in m

= cross sectional area of the fuct (A)

Permeter of the duct (p)

 $= \frac{D}{4}$ for circulation cross section, D is a diameter of duct = $\frac{ab}{a}$

 $2(a+b)^{,}$

Where a and b is a side of rectangle.

The value of friction factor (*f*) for different Reynolds numbers and different roughness factor find directly from the Moody chart as shown in Figure.

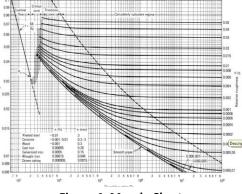


Figure 4. Moody Chart

Dynamic Losses in Ducts

The dynamic losses are caused due to the change in direction or magnitude of velocity of the fluid in the duct. The change in the direction of the velocity occurs at bends and elbow. The change in the magnitude of velocity occurs when the area of duct changes i.e. enlargement, contraction, suction etc.

The dynamic pressure loss Δpd is proportional to the velocity pressure and it is expressed as a product of the downstream velocity pressure pv and a dynamic loss coefficient (K).

$$\Delta P_d = KP_v = K\left(\frac{pC^2}{2}\right)$$

Where V=downstream velocity.

The losses in elbows, fittings etc. are also expressed in items of an equivalent length L, of the duct, so that

$$\Delta P_d = KP_v = \left(\frac{4fL_eP_v}{D}\right)$$

Friction Chart

The frictional pressure loss for circular ducts (in mm of water) for various velocities (in m/s) and duct diameters (in mm) obtained directly from the friction chart as shown In this chart, the vertical ordinate represent volume flow rate of air in m^3/s and the horizontal ordinate represents frictional pressure loss in mm of water per unit length of the circular duct. These charts are valid for 20°C and 1.013 bar and clean galvanized iron ducts with joints and seams

Duct Velocity Ranges

The velocities in the ducts must be high enough to reduce the size of the ducts but it should be low enough to reduce the noise and pressure losses to economize power requirement. The velocities recommended for various applications are

Table: 1 Recommended Velocities in (m/min)

Designation	Residences	School theatres and Public	Industrial Building	
Outdoor air intake	150	150	150	
Filters	75	95	105	
Cooling coil	135	150	180	
Air washer	150	150	150	
Fan outlet	300-480	400-	480-725	
Grills	40-60	60-80	80-100	
Main duct	210-300	300-400	360-540	
Branch duct	180	180-270	240-300	
Branch riser	150	180-210	240	

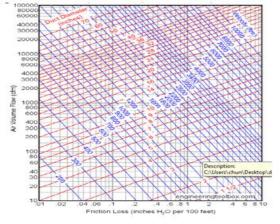


Figure: 5 Duct Friction Chart

Duct Material Roughness

Duct material roughness refers to the inside surface of the duct material the rougher the surface, higher the friction loss. The recommended roughness for different material pipes or ducts are **Table: 2** The recommended roughness for different material pipes or ducts material

Types of duct or pipes material	Roughness Category	Absolute roughness
PVC Plastic pipe	Smooth	0.01-0.05
Galvanized steel longitudinal seam	Medium Smooth	0.05-0.1
Galvanized steel continuous roll	Medium Smooth	0.06-0.12
Fibrous flass duct,rigid	Medium Smooth	0.9
Flexible duct metallic	Rough	1.2-2.1
Aluminum	Smooth	0.04-0.06
Concrete	Medium	1.2
Concrete	Smooth	0.3
Commercial steel pipe	Smooth	0.045

Equivalent Duct Diameter

In order to find the equivalent diameter of a circular duct for a rectangular duct for the same pressure loss per unit length, Huebscher developed a relationship between rectangular and round duct. According to this,

$$D_e = \frac{1.30(ab)^{0.625}}{(a+b)^{0.250}}$$

Where, De = equivalent circular diameter of rectangular duct for equal length, mm

a = length one side of duct, mm

b = length adjacent side of duct, mm

Equivalent round duct diameter can also be determined by using which is based on the above equation.

Light Circular Duct Diameter, mm 100 109 125 122 137 150 133 150 164 175 143 161 177 191 200 152 172 188 204 219 225 161 181 200 216 232 246 250 169 1800 216 232 246 225 250 169 1800 210 228 244 259 273 275 176 199 220 238 256 232 239 314 328 3500 185 207 236 305 325 343 361 382 400 437 450 217 247 299 321 333 363 382 400 433 457 533 567 568 628 656 500 227 28								Ler	igth of	One Si	de of R	ectang	ular Du	ict (a), 1	mm						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Lgth _	100	125	150	175	200	225	250	275	300	350	400	450	500	550	600	650	700	750	800	900
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	۸dj.۴									Circula	r Duct	Diame	ter, mu	h							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	100	109																			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$																					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							246														
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								223													
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									301												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										328											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											383										
500 227 258 287 313 337 360 381 401 420 455 448 518 547 550 236 269 299 326 352 375 398 419 439 477 511 543 573 601 600 245 279 310 339 365 390 414 436 457 496 533 567 598 622 653 683 711 700 261 298 331 362 391 418 443 467 490 553 578 610 644 677 708 737 765 750 268 306 341 373 402 430 457 482 506 550 552 650 666 700 737 763 792 8 800 225 748 546 494 522 548 597 643												437									
550 236 269 229 326 322 375 398 410 439 477 511 543 573 601 600 245 279 310 339 365 390 414 436 457 496 533 567 598 628 656 650 253 289 321 351 378 404 429 452 474 515 553 589 622 663 683 711 700 261 298 331 362 391 418 443 467 496 530 573 610 644 677 708 737 765 792 8 800 275 314 350 383 414 442 470 496 520 567 609 649 687 722 755 787 818 8 900 2189 330 367 402 435 <	450	217	247	274	299	321	343	363	382	400	433	464	492								
$ \begin{array}{c} 600 & 245 & 279 & 310 & 339 & 365 & 390 & 414 & 436 & 457 & 496 & 533 & 567 & 598 & 628 & 656 \\ \hline 650 & 253 & 289 & 321 & 351 & 378 & 404 & 429 & 452 & 474 & 515 & 553 & 589 & 622 & 653 & 683 & 711 \\ \hline 700 & 261 & 298 & 331 & 352 & 378 & 404 & 429 & 452 & 474 & 515 & 553 & 589 & 622 & 653 & 683 & 711 \\ \hline 700 & 268 & 306 & 341 & 373 & 402 & 430 & 457 & 482 & 506 & 550 & 592 & 630 & 666 & 700 & 732 & 763 & 792 & 88 \\ \hline 800 & 275 & 314 & 350 & 383 & 414 & 442 & 470 & 496 & 520 & 567 & 609 & 649 & 687 & 722 & 755 & 787 & 818 & 89 \\ \hline 900 & 289 & 330 & 367 & 402 & 435 & 465 & 494 & 522 & 548 & 597 & 643 & 686 & 726 & 763 & 799 & 833 & 866 & 89 \\ \hline 1000 & 301 & 344 & 384 & 420 & 454 & 486 & 517 & 546 & 574 & 626 & 674 & 719 & 762 & 802 & 840 & 876 & 911 & 9 \\ \hline 1000 & 311 & 354 & 389 & 437 & 473 & 506 & 538 & 509 & 598 & 652 & 703 & 751 & 795 & 888 & 878 & 916 & 933 & 92 \\ \hline 1200 & 324 & 370 & 413 & 453 & 490 & 525 & 558 & 590 & 620 & 677 & 731 & 780 & 827 & 872 & 914 & 954 & 993 & 101 \\ \hline 1400 & 344 & 394 & 439 & 482 & 522 & 559 & 595 & 629 & 662 & 724 & 781 & 835 & 886 & 934 & 980 & 1024 & 1066 & 11 \\ \hline 1500 & 353 & 404 & 452 & 495 & 536 & 575 & 612 & 648 & 681 & 745 & 805 & 860 & 913 & 963 & 1011 & 1057 & 1100 & 11 \\ \hline 1600 & 364 & 454 & 452 & 495 & 536 & 575 & 612 & 648 & 681 & 745 & 805 & 866 & 913 & 963 & 1011 & 1057 & 1100 \\ \hline 1400 & 371 & 425 & 475 & 521 & 564 & 605 & 644 & 682 & 718 & 785 & 849 & 908 & 964 & 1018 & 1069 & 1118 & 1164 & 115 & 12 \\ \hline 1900 & 371 & 425 & 475 & 521 & 564 & 605 & 644 & 682 & 718 & 785 & 849 & 908 & 964 & 1018 & 1069 & 1118 & 1164 & 115 & 12 \\ \hline 2000 & 397 & 443 & 485 & 533 & 577 & 619 & 666 & 674 & 713 & 751 & 823 & 889 & 952 & 1012 & 1068 & 1122 & 1174 & 1224 & 12 \\ \hline 2000 & 397 & 453 & 506 & 555 & 602 & 666 & 728 & 728 & 793 & 1034 & 1092 & 1147 & 1200 & 1252 & 12 \\ \hline 2000 & 397 & 453 & 506 & 555 & 602 & 666 & 728 & 728 & 793 & 1034 & 1092 & 1147 & 1200 & 1252 & 12 \\ \hline 2000 & 397 & 453 & 506 & 555 & 602 & 666 & 678 & 728 & 798 & 908 & 973 & 1034 & 1092 & 1147 & 1200$	500		258	287			360		401	420		488	518								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								398		439	477										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$																					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																			820	075	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																			847	875	984
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$																			897 944	927 976	1037
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																			988	1022	1086
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																			1030	1066	1133
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$																			1069	1107	1177
$ \begin{array}{ccccccccccccccccccccccccccccccc$				439											934				1107	1146	1220
1700 371 425 475 521 564 605 644 682 718 785 849 908 964 1018 1069 1118 1164 12 1800 379 434 485 533 577 619 660 698 735 804 869 930 988 1043 1096 1146 1195 12 1900 387 444 495 544 590 663 674 713 751 823 889 952 1012 1068 1122 1174 1224 12 2000 395 453 506 555 602 646 688 728 767 840 908 973 1034 1092 1147 1224 12 1147 1224 12 1147 1224 12 1147 1224 12 1147 1224 12 1147 1224 12 1147 1224 12	1500	353	404	452	495	536	575	612	648	681	745	805	860	913	963	1011	1057	1100	1143	1183	1260
1800 379 434 485 533 577 619 660 698 735 804 869 930 988 1043 1096 1146 1195 123 1900 387 444 496 544 590 663 674 713 751 823 889 952 1012 1068 1122 1174 1224 12 2000 395 453 506 555 602 646 688 728 767 840 908 973 1034 1092 1147 1224 12 2100 402 461 516 566 614 659 702 743 782 857 927 993 1055 1115 1172 1226 1279 13	1600	3.62	415	463	508	551	591	629	665	700	766	\$27	885	939	991	1041	1088	1133	1177	1219	1298
1000 387 444 496 544 590 663 674 713 751 823 889 952 1012 1068 1122 1174 1224 1174 2000 395 453 506 555 602 646 688 728 767 840 908 973 1034 1092 1147 1200 1252 13 2100 402 461 516 566 614 659 702 743 782 857 927 993 1055 1117 1126 1226 127 13								644											1209	1253	1335
2000 395 453 506 555 602 646 688 728 767 840 908 973 1034 1092 1147 1200 1252 13 2100 402 461 516 566 614 659 702 743 782 857 927 993 1055 1115 1172 1226 1279 13																			1241	1286	1371
2100 402 461 516 566 614 659 702 743 782 857 927 993 1055 1115 1172 1226 1279 13																			1271	1318	1405
																			1301	1348	1438
2200 410 470 323 377 023 071 713 737 797 874 943 1013 1070 1137 1193 1231 1303 13																			1329	1378	1470
																			1356	1406	1501
																			1409	1454	1561
																			1434	1488	1589
																			1459	1513	1617
																			1483	1538	1644
2800 450 516 577 634 688 738 787 834 879 964 1043 1119 1190 1259 1324 1387 1447 15	2800	450	516	577	634	688	738	787	834	879	964	1043	1119	1190	1259	1324	1387	1447	1506	1562	1670
2900 456 523 585 643 697 749 798 845 891 977 1058 1135 1208 1277 1344 1408 1469 15	2900	456	523	585	643	697	749	798	845	891	977	1058	1135	1208	1277	1344	1408	1469	1529	1586	1696

Figure: 6 Equivalent round duct diameters

Duct Design Method

There are mainly three methods of duct design. These are:

Velocity Reduction Method

The duct are designed in such a way that the velocity decreases as flow proceeds. The pressure drops are calculated for these velocities for respective branches and main duct. The pressure at the outlet is adjusted by damper in the respective ducts. The advantages of this system are:

- a) This method is the easiest among all methods in sizing the duct diameters.
- b) The velocities can be adjusted to avoid noise.
- c) This is adopted only for simple system.

Equal Friction Drop (friction loss) Method

In this method, the size of the duct is decided to give equal pressure drop per meter length an all ducts. The velocities are automatically reduced in the branch duct as the flow is decreased.

The main advantage of this method is that, if the duct layout is symmetrical giving the same length in each run, then no dampers are required to balance the system as this method gives equal pressure loss in various branches.

The Static Regain Method

For the perfect balancing of the air duct layout system, the pressure at all outlets must be made same. This can be done by equalizing the pressure losses in the various branches. This is possible if the friction loss in each run is made equal to pressure gain due to reduction in velocity. The gain in pressure due to change in velocity is given by

SPR = R (
$$\frac{V_1^2 - V_2^2}{2g}$$
)

Where,

SPR = Static Pressure regain R = Static regain factor DESIGN CALCULATION

DESIGN CALCULATION

In the building there are total 18 rums, where cooling is required. The list of few rooms floor wise in the Building where cooling load is required is given below:

Table:3 List of rooms

S.No	Room	Width(m)	Length(m)	Area(m2)	Celling HT(m)	AC Requirem ent
1	120Seat lecture room 1	14.17	8.67	122.85	3.4	122.85
2	Seminar Room	12.53	6.97	87.33	3.35	87.33
3	Central Design Office	14.17	20.09	284.68	3.32	284.68
4	Auditorium	20	25	500	7.55	500
5	Library Facility	9.07	6.87	62.31	3.35	62.31

On the basis of cooling load required in a

room, fan coil unit (FCU) or air handling unit (AHU) is used. In this work it is decided to use FCU where cooling load required up to 5 tons and to use AHU above 5 tons. As we know that, for FCU there is no duct is required. So, we calculate the duct size only for those rooms where cooling load is required more than 5 tons or where AHU is used. For that purpose firstly calculate the air flow rate/dehumidified air. After that the calculation for duct dimension has to be done.

Calculation for dehumidified air quantity

Room Rise = (1 – by pass factor)*(Room temp - ADP)

Dehumidified Air = RSH / (20.44 * dehumidified rise)

Where,

ADP = apparatus due point

RSH = room sensible heat

Calculation for duct size/dimension:

- a) First find out the air flow rate i.e. dehumidified air and cooling load.
- Based on cooling load select AHU or FCU which is to be installed. For FCU there is no need to duct system. If AHU then calculate the duct dimension.
- c) Select initial velocity from table 1

$$Duct Area = \frac{Air flow rate}{V}$$

- d) Select duct size/dimension from figure 6 also Equivalent duct diameter.
- e) Then initial friction rate is determined by using friction chart, on the basis of air quantity and equivalent duct diameter or velocity of air from figure 5.

Calculations for the list of rooms:

1. 120 seat lecture room

By pass factor = 0.12 Room temperature = 23°C ADP = 9°C RSH = 27078.65 W Room Rise = (1 - 0.12)*(296 - 282)

International Journal of Engineering Research-Online

A Peer Reviewed International Journal

Articles available online <u>http://www.ijoer.in</u>; editorijoer@gmail.com

Vol.4., Issue.6., 2016 Nov-Dec.

= 12.32

Dehumidified Air = 27078.65 / (20.44 * 12.34) = 107.53 m3/min Safety factor (5%) = 5.37 m^3 /min Total dehumidified air = 112.90 m^3 /min \approx 113 m^3 /min Cooling load = 12.39 tons Initial Velocity=300m/min Duct area= $\frac{air flow rate}{velocity}$ $=\frac{113}{300}=0.38m^2=4.09ft^2$ Duct size = 26 * 24 inch = 650 * 600 mm Equivalent duct diameter = 27.2 inch = 680 mm Friction rate = 0.0514 2. Seminar room By pass factor = 0.12Room temperature = 23°C $ADP = 9^{\circ}C$ RSH = 16495.36 W Room Rise = $(1 - 0.12)^*(296 - 282)$ = 12.32 Dehumidified Air = 16495.36 / (20.44 * 12.32) $= 65.50 m^3 / min$ Safety factor (5%) = 3.27 m^3 /min Total dehumidified air = 68.77 m^3 /min \approx 69 m^3 /min Cooling load = 7.16 tons Initial velocity = 300 m/min Duct area = = 0.23 m^2 = 2.47 ft^2 300 69 Duct size = 24 * 16 inch = 600 * 400 mm Equivalent duct diameter = 21.3 inch = 532.5 mm \approx 530 mm Friction drop = 0.0601**3** Central design office By pass factor = 0.12Room temperature = 23°C $ADP = 10^{\circ}C$ RSH = 55041.21 W Room Rise = $(1 - 0.12)^*(296 - 283)$ = 11.44 Dehumidified Air = 55041.21 / (20.44 * 11.44) $= 235.38 m^3 / min$ Safety factor (5%) = 11.76 m^3 /min Total dehumidified air = 247.14 m^3 /min \approx 247 m^3/min Cooling load = 24.69 tons Initial velocity = 300 m/min Duct area = $\frac{247}{300}$ = 0.82 m^2 = 8.82 ft^2

Duct size = 38 * 36 inch = 950 * 900 mm Equivalent duct diameter = 40.4 inch = 1010 mm \approx 1000 mm Friction drop = 0.02364 Auditorium. By pass factor = 0.12Room temperature = 23°C $ADP = 9^{\circ}C$ RSH = 101211.71 W Room Rise = $(1 - 0.12)^*(296 - 282)$ = 12.32 Dehumidified Air = 101211.71 / (20.44 * 12.32) = 401.91 m3/min Safety factor (5%) = 20.09 m^3 /min Total dehumidified air = 422 m^3 /min Cooling load = 50.14 tons Initial velocity = 300 m/min Duct area = $\frac{422}{300}$ = 1.40 m^2 = 15.06 mft^2 Duct size = 48 * 48 inch = 1200 * 1200 mm Equivalent duct diameter = 52.6 inch = 1315 mm \approx 1300 mm Friction drop = 0.03185. Library Facility By pass factor = 0.12 Room temperature = 23°C $ADP = 9^{\circ}C$ RSH = 11554.81 W Room Rise = (1 - 0.12)*(296 - 282)= 12.32 Dehumidified Air = 11554.81 / (20.44 * 12.32) $= 45.88 m^3 / min$ Safety factor (5%) = 2.29 m^3 /min Total dehumidified air = 48.17 m^3 /min \approx 48 m^3 /min Cooling load = 5.57 tons Initial velocity = 300 m/min Duct area = = 0.16 m^2 = 1.72 ft^2 Duct size = 18 * 16 inch = 450 * 400 mm Equivalent duct diameter = 18.5 inch = 462.5 mm \approx 460 mm Friction drop = 0.0318**RESULT ANALYSIS** The result analysis is based on the duct design of the building with hand calculation and duct design software like ductulator.

Duct size: To design the duct for building calculation of cooling load and air flow rate is done. By taking some suitable velocity considering noise

Vol.4., Issue.6., 2016 Nov-Dec.

Articles available online http://www.ijoer.in; editorijoer@gmail.com

factor main duct area is calculated. Based on these duct area, the duct size is find out for the rectangular duct as well as round duct. The cooling load, dehumidified air flow, duct size for all room is given in below:

Table:	4	Cooling	Load	and	dehumidified	air	for
respec	tive	e room					

S.No	Room NAME	Cooling Load (tons)	Dehumidified Air Flow (m/min)	Type of unit used (FCU/AHU)
1	120Seat lecture room 1	12.39	113	AHU
2	Seminar Room	7.16	69	AHU
3	Central Design Office	24.69	247	AHU
4	Auditorium	50.14	422	AHU
5	Library Facility	5.57	48	AHU

Table:5ductsizecomparisonbetweenhandcalculation and ductulator software

S.No	Room	Ha	and calculat	ion	Using software (ductulator)			
1	120Seat lecture room 1	650*600	680	0.0445	700*550	675	0.0487	
2	Seminar Room	600*400	530	0.0623	550*450	530	0.0655	
3	Central Design Office	950*900	1000	0.0295	1000*850	1000	0.0303	
4	Auditorium	1200*1200	1300	0.0195	1250*1150	1300	0.022	
5	Library Facility	450*400	460	0.0792	450*400	460	0.0822	

1. For calculating duct size equal friction method is used. Frictional pressure drop are different for all rooms (given in above table) as velocity kept constant.

2. Ansys is used to observe the friction loss in rectangular duct as well as circular duct. For analysis we select only small portion of duct (3 m), also it can be applied for all ducting in a building.

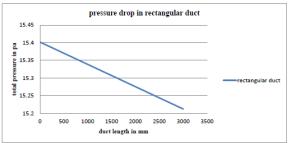


Figure: 7 Pressure drop in rectangular duct

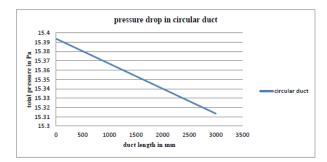


Figure:8 Pressure drop in rectangular duct

After studying the result (from Figure7 & 8) comes that circular duct has minimum friction loss as compared to the rectangular duct. **CONCLUSION**

- The following conclusion summarizes the design work presented in this thesis:-
- The duct design for building is done, by using equal friction method. All values are comparable with duct software called ductulator.
- The calculated value of frictional is less or near as calculated by software. Due to less value of friction drop, duct diameter is increased but loss in total pressure (i.e. static pressure, velocity pressure) can be avoided.
- Due to increased duct diameter the use of damper may be decreased.
- Also the circular duct can carry more air in less space, because of that, less duct material, less duct surface friction and less insulation is required.
- Pressure loss in duct fitting can be minimized by proper design the elbow shape.
- Ansys 13.0 software is used to analyse the pressure loss in circular and rectangular duct. After analysis we conclude that the circular duct has minimum friction loss, so it is better shape for ducting.

REFERENCE

- [1]. W. R. Chan, J. Joh, M. H. Sherman Environmental. Analysis of air leakage measurements of US houses. Energy and Buildings 66 (2013) 616–625.
- [2]. R.Whalley, A. A. Ameer. Heating, ventilation and airconditioning system modeling||. Building and Environment 46 (2011) 643-656.

- [3]. Tengfang T. Xu, Francois R. Carrie, Darryl J Dickerhoff, William J. Fisk. —Performance of thermal distribution systems in large commercial building||. Building and Environment 34 (2002) 215-226.
- [4]. C. Aydin, B. Ozerdem. Air leakage measurement and analysis in duct systems. Energy and Buildings 38 (2006) 207–213.
- [5]. I. Kotcioglu, A. Cansiz, M. N. Khalaji. Experimental investigation for optimization of design parameters in a rectangular duct with plate-fins heat exchanger by Taguchi method. Applied Thermal Engineering 50 (2013) 604-613.
- [6]. W. J. Fisk, W. Delp, R. Diamond, D. Dickerhoff, R. Levinson, M. Modera, M. Nematollahi, D. Wang. Duct systems in large commercial buildings: physical characterization, air leakage, and heat conduction gains. Energy and Buildings 32 (2000) 109–119.
- [7]. L. Pang, J. Xu, L. Fang, M. Gong, H. Zhang, Y. Zhang. Evaluation of an improved air distribution system for aircraft cabin. Building and Environment 59 (2013) 145-152.
- [8]. K. Srinivasan. Measurement of air leakage in air-handling units and air conditioning ducts. Energy and Buildings 37 (2005) 273–277.
- [9]. H. R. Shiu, F. C. Ou, S. L. Chen. Optimization design of exhaust duct system in semiconductor factory using dynamic programming method. Building and Environment 38 (2003) 533 – 542.
- [10]. G.S. Sharma and B.Sharma. —Duct designing in air conditioning system and its impact on system performance||. VSRD International Journal of Mechanical, Automobile and Production Engineering, Vol. 2 No. 9 November 2012
- [11]. D. Zhang, X. Zhang, N. Cai. Study on energy saving possibility of digital variable multiple air conditioning system in three office buildings in Shanghai. Energy and Buildings 75 (2014) 23–28.
- [12]. A. G. Muñoz, N.C. U. Rodríguez, J.M. Belman Flores, V.H Rangel Hernández. Analysis of

effect caused by fitting in the measurements of flow in air conditioning system. Applied Thermal Engineering 33-34 (2012) 227-236.