International Journal of Engineering Research-Online A Peer Reviewed International Journal Email:editorijoer@gmail.com <u>http://www.ijoer.in</u>

Vol.4., Issue.4., 2016 (July-August)

RESEARCH ARTICLE

ISSN: 2321-7758

ON STRONG B(m,n) NEAR SUBTRACTION SEMIGROUPS

V.MAHALAKSHMI¹, S.MAHARASI², S.JAYALAKSHMI³,

¹Research Scholar, Sri Parasakthi College for Women, Courtallam, Tamil Nadu,India
²Assistant Professor in Mathematics,V.V College Of Engineering, Tisayanvilai, Tamil Nadu,India
³Associate professor in Mathematics,Sri Parasakthi College for Women, Courtallam
Tamil Nadu,India

ABSTRACT

In this paper, we introduced the concept of B (m,n) near subtraction semigroup. (i.e) A near subtraction semi group X has the property B(m,n), if there exist positive integers m, n such that $<x>_r^m X = X < x>_l^n$, for all x in X. We also discuss some of their properties and obtained certain theorem.

Key words: \bar{s} -near subtraction semigroup, property (α), idempotent, regular.

©KY PUBLICATIONS

1. INTRODUCTION

B. M. Schein [10] considered systems of the form (X; 0;)), where X is a set of functions closed under the composition "O" of functions (and hence (X; **0**) is a function semigroup) and the set theoretic subtraction " $\$ " (and hence (X; $\$) is a subtraction algebra in the sense of [1]). He proved that every subtraction semigroup is isomorphic to a difference semigroup of invertible functions. B.Zelinka [11] discussed a problem proposed by B. M. Schein concerning the structure of multiplication in a subtraction semigroup. He solved the problem for subtraction algebras of a special type, called the atomic subtraction algebras. Y.B.Jun [5] introduced the notion of ideals in subtraction algebras and discussed characterization of ideals. In [4], Y. B. Jun and H.S.Kim established the ideal generated by a set, and discussed related results. For basic definition one may refer to Pilz[8].

In this paper, with a new idea, we define strong B(m,n) near subtraction semigroup and investigate some of their properties. After deriving basic properties of a strong B(1,2) near subtraction

semigroup, We obtain necessary and sufficient condition for a s-near subtraction semigroup with property (α) to be a strong B(1,2) near subtraction semigroup. It is also shown that, in a strong B(m,n) s-near subtraction semigroup with property (α), the concepts of prime ideal, completely prime ideal, and maximal ideal coincide. Unless stated otherwise throughout this paper X stands for a zero-symmetric near subtraction semigroup.

2. Preliminaries on Near Subtraction Algebra

Definition 2.1: A non-empty set X together with binary operations "-" and is said to be a **subtraction algebra** if it satisfies the following:

- I. x−(y−x)=x.
- II. x-(x-y)=y-(y-x).
- III. (x-y)-z=(x-z)-y. for every $x,y,z \in X$.

Definition 2.2: Anon-empty set X together with two binary operations "-" and " \bullet " is said to be a **subtraction semigroup** if it satisfies the following:

- I. (X,-) is a subtraction algebra.
- II. (X,•)is a semigroup.
- III. x(y-z) = xy-xz and (x-y)z = xz-yz, for every $x, y, z \in X$.

Definition 2.3: A non-empty set X together with two binary operations "-" and "•" is said to be a near subtraction semigroup (right) if it satisfies the following:

- ١. (X,-) is a subtraction algebra.
- Π. (X,•) is a semigroup.
- 111. (x-y)z = xz-yz, for every $x,y,z \in X$.

Definition 2.4: A non-empty subset S of a subtraction semigroup X is said to be a sub **algebra** of X, if $x-x' \in S$ when ever $x, x' \in S$.

Note 2.5: Let X be a near subtraction semigroup. Given two subsets and В of Χ, Α $AB = \{ab/a \in A, b \in B\}$. Also we defined another operation " *",

 $A^*B = \{ab-a(a'-b)/a, a' \in A, b \in B\}.$

Definition2.6: An element $e \in X$ is said to be **idempotent** if for each $e \in X$, $e^2 = e$.

Definition 2.7: We say that X is an s(s') near subtraction semigroup if $a \in Xa(aX)$, for all a∈X.

Definition 2.8: A s-near subtraction semigroup X is said to be a \bar{s} -near subtraction semigroup if $x \in x$ X, for all $x \in X$.

Definition 2.9: A near subtraction semigroup X is said to be **sub commutative** if aX= Xa, for every a∈X.

Definition 2.10: A near subtraction semigroup X is

said to be **left-bipotent** if $Xa = Xa^2$, for every $a \in X$.

Definition2.11: An element $a \in X$ is said to be **regular** if for each $a \in X$, a=ab a for some $b \in X$.

Definition2.11: A near subtraction semigroup X is called **strongly regular** if for each $a \in X$, there exists $b \in X$ such that $a = ba^2$.

Note 2.13: Let X be a zero-symmetric near subtraction semigroup and if X is strongly regular, then X is regular.

Definition 2.14:A near subtraction semigroup X is said to have property(α) if xX is a subalgebra of (X,-), for every $x \in X$.

Definition 2.15: A subalgebra A of (X,-) is called an **left(right)X-subalgebra** of X if $A(AX) \subseteq A$.

Note 2.16: Let $a \in X$. Then $\langle a \rangle_r (\langle a \rangle_l)$ is the intersection of all right(left) X-subalgebra containing a.

Definition 2.17: A nearsubtraction semigroupX is said to be two sided if every left X-subalgebra is right Xsubalgebra and vice versa.

2.18: Note Whenever а zero-symmetric nearsubtraction semigroup contains non-zero nilpotent elements, then X has IFP.

Definition2.19: Let P be an ideal of X. P is called

- (i) a **prime ideal**, if for all ideals I, J of X, $IJ \subseteq P$ \Rightarrow I \subset P or J \subset P.
- (ii) acompletely prime ideal, if for any a, b in X, $ab \in P \implies either a \in P \text{ or } b \in P$.
- (iii) a **primary ideal** if $abc \in P$ and if the product of any two of a, b, c is not in P, then the kth power of the third element is in P.
- (iv) a maximal ideal (minimal ideal) if it is maximal (minimal) in the set of all nonzero ideals of X.

3. On Strong B(m,n) near subtraction semigroups

In this section, We discuss some properties of strong B(1,2) near subtraction semigroup and some properties of strong B(1,2) \bar{s} -near subtraction semigroup with property (α).

Definition3.1: We say that a near subtraction semigroup X has the property Strong B(m,n), if there exist positive integers m, n such that $\langle x \rangle_r^m a =$

 $a < x >_{I}^{n}$, for all x,a in X.

Example3.2.1: Let X= {0,a,b,1} in which "-" and "•" are defined by,

_	0	a	b	1					b	
0	0	0	0	0	0	Τ	0	0	0	0
a	a	0 b	a	0	a		0	a	0	a
b	b	b	0	0	b		0	0	b	b
1	1	b	a	0	1		0	a	b	1

Hence X is a strong B(m,n) near subtraction semigroup, for all positive integers m and n.

Example3.2.2: Let X={0,a,b,c} in which "-" and "•" a redefined by,

			b				a		
0	0	0	0	0	0	0	0	0	0
a	a	0	a	b	а	0	а	0	а
b	b	b	0	b	b	0	0	0	b
			a		с	0	а	0	с

X is a B(2,1)near subtraction semigroup. But not a

260

strong B(2,1)near subtraction semigroup, Since $\langle c \rangle_r^2 b \neq b \langle c \rangle_l$.

Example:3.2.3 Let X={0,a,b,c} in which "-" and "•"are defined by,

	0				•	0	а	b	
0	0	0	0	0	0	0	0	0	
a	a	0	с	b	а	0	0	a	
b	a b	0	0	b	b	0	a	с	
с	с	0	с	0	с	0	а	b	

X is a strong B(2,3)near subtraction semigroup. But not a strong K(2,3)near subtraction semigroup, Since $b^2c \neq cb^3$.

Proposition 3.3: Every left X-subalgebra of strong B(1,2)near subtraction semigroup is also a rightX-subalgebra.

Proof: Let A be a left X-subalgebra of X and $a \in A$. Since X is a strong B(1,2)near subtraction semigroup,

for $x \in X$, $ax \in \langle a \rangle_r x = x \langle a \rangle_l^2 \subseteq x \langle a \rangle_l \subseteq \langle a \rangle_l \subseteq A$. (i.e.,)

 $AX \subseteq A$. Hence A is a right X-subalgebra of X.

Proposition3.4:If X is a strong B(2,1) near subtraction semigroup, then every right X-subalgebra is also a left X-subalgebra.

 $<a>^2_r x \subseteq <a>_r x \subseteq <a>_r \subseteq A.$ (i.e.,) $XA \subseteq A$. Hence A is a left X-subalgebra of X.

Proposition 3.5: If X is a strong B(1,2) and strong B(2,1)near subtraction semigroup, then X is two sided.

Proof: Follows from Propositions 3.3 and 3.4.

Proposition3.6: Let X be a \bar{s} -near subtraction semigroup with property (α). If X is a strong B(1,2) near subtraction semigroup, then X has strong IFP.

Proof: Let I be an ideal of X. Assume that $ab \in I$ for a, $b \in X$. For $a,x \in X$, $ax \in \langle a \rangle_{r}x = x \langle a \rangle_{l}^{2} \in X \langle a \rangle_{l}^{2} \subseteq \langle a \rangle_{l}^{2} =$ XaXa and so $ax = x_{1}ax_{2}a$. Thus $axb = x_{1}ax_{2}ab \in XI \subseteq I$ and so $axb \in I$. (i.e.,) X has strong IFP.

Proposition 3.7: Let X be a \bar{s} -near subtraction semigroup with property (α). If X is a strong B(1,2) near subtraction semigroup, then M₁ \cap M₂=M₁M₂, for any two left X-subalgebra M₁ and M₂ of X.

Proof: Let $x \in M_1 \cap M_2$. Then, $x^2 \in \langle x \rangle_r x =$

$$\begin{split} x < x >_{l}^{2} = xXxXx \in XXxXx \subseteq XXXx \subseteq XM_{1}XM_{2} \subseteq M_{1}M_{2}. \\ (i.e.,)M_{1} \cap M_{2} \subseteq M_{1}M_{2}. \\ \text{On the other hand, if} \\ x \in M_{1}M_{2} \text{ then } x = yz, \text{ Where } y \in M_{1} \text{ and } z \in M_{2}. \\ \text{Now, we have } x = yz \in \langle y \rangle_{r}z = z < y \rangle_{l}^{2} \in X < y \rangle_{l}^{2} \subseteq \langle y \rangle_{l}^{2} = XyXy \subseteq Xy \in XM_{1} \subseteq M_{1}. \\ \text{(i.e.,)}M_{1}M_{2} \subseteq M_{1}. \\ \text{Similarly} \\ M_{1}M_{2} \subseteq M_{2} \text{ and so } M_{1}M_{2} \subseteq M_{1} \cap M_{2}. \end{split}$$

Proposition3.8: Let X be a strong B(1,2) \bar{s} -near subtraction semigroup with property (α). Then $Xx \cap Xy = Xxy$, for all x,y in X.

Proof: Let x, $y \in X$. Taking $M_1 = Xx$ and $M_2 = Xy$ in the above Proposition 3.7, we get

 $Xx \cap Xy = XxXy$. Also $Xx = Xx \cap X = XxX$ and this yields that Xxy = XxXy. Hence $Xx \cap Xy = Xxy$.

Proposition 3.9: Let X be a strongB(1,2) \bar{s} -near subtraction semigroup with property (α). Then X is left bi-potent.

Proof: By the Proposition 3.8, for $a \in X$, We have $Xa = Xa \cap Xa = Xaa = Xa^2$.

(i.e.,) X is left bi-potent.

Corollary3.10: Let X be a strong B(1,2) \bar{s} -near subtraction semigroup with property (α). Then X is strongly regular.

Proof: Trivially follows from the fact that $a \in Xa$ and from Proposition 3.9.

Corollary3.11: Let X be a strongB(1,2) \bar{s} -near subtraction semigroup with property (α). Then X is regular.

Proof:Follows from theCorollary 3.10&Note 2.13.

Theorem3.12:Let X be a strong B(1,2) \bar{s} -near subtraction semigroup with property (α) and let A and B be any two left X-subalgebras of X. Then we have the following.

I.	$\sqrt{A} = A.$
i.	$A \cap B = AB.$
ii.	A ² = A.

II. If
$$A \subset B$$
, then $AB = A$.

III. $A \cap XB = AB$.

IV. If A is proper, then each element of A is a zero divisor.

٧.

A is a completely semi prime ideal of X.

Proof:

- I. For $x \in \sqrt{A}$, there exists some positive integer k such that $x^k \in A$. Since X is a strong B(1,2)s-near subtraction semigroup with property (α), by the Corollary 3.10, X is strongly regular. If $x \in X$, then $x = ax^2$, for some $a \in X$. This implies $x = ax^2 = (ax)x =$ $a(ax^2)x = a^2x^3 = \dots = a^{k-1}x^k \in XA \subseteq A$. (i.e.,) $x \in A$. Thus $\sqrt{A} \subseteq A$. Obviously $A \subset \sqrt{A}$ and so $A = \sqrt{A}$.
- II. Since X is a \overline{s} -near subtraction semigroup with property (α), by the Proposition 3.7, AB = A \cap B.
- III. Taking B = A in (ii), We get A = A^2 . Suppose that A \subset B. Then A \cap B = A and(ii) gives A = AB.
- IV. $A \cap XB \subset A \cap B$ and so $A \cap XB \subset AB$ (by (ii)). Also $AB = A \cap B \subset A$ and $AB \subset XB$. Therefore $AB \subset A \cap XB$. Hence $AB = A \cap XB$.
- V. If X has the IFP, the concepts of left zerodivisors, right zero-divisors and zerodivisors are equivalent in X. Thus we need only to prove that A* consists of only zerodivisors. Let $a \in A$. By (iii), for the principal left X-subalgebraXa, Xa = $(Xa)^2 = XaXa$. Consequently, for any $x \in X$, there exists $y,z \in X$ such that xa = yaza. (i.e.,) (x-yaz)a = 0. If a is not a zero-divisor, then x-yaz = 0. This implies $x = yaz \in XAX \subset A$. (i.e.,) $X \subset A$. Hence X = A which is a contradiction to the hypothesis that A is proper. Thus $a \in A^*$. Hence 'a' is a zero-divisor.
- VI. Let a²∈A. By the Proposition 3.6, X has strong IFP. So axa∈A.By Corollary 3.11,a∈A. Hence A is completely semi-prime.

Theorem3.14:Let X be a strong B(1,2) \bar{s} -near subtraction semigroup with property (α) and let P be a proper left X-subalgebra of X. Then the following are equivalent.

- I. P is a prime ideal.
- II. P is a completely prime ideal.
- III. P is a primary ideal.
- IV. P is a maximal ideal.

Proof: (i) ⇒ (ii) By Remark 2.2.23,P is an ideal of X and assume that P is a prime ideal. Let $ab \in P$. By the Proposition 3.8 and 2.7.22, XaXb = Xab \in XP \subseteq P. By the Remark 2.2.23, Xa and Xb are ideals in X. Since P is prime, XaXb \subseteq P which implies Xa \subseteq P or Xb \subseteq P. Suppose Xa \subseteq P, then a = axa \in Xa \subseteq P. Similarly Xb \subseteq P gives that b = byb \in Xb \subseteq P and (ii) follows. (ii) \Rightarrow (i) Obvious.

 $(ii) \rightarrow (i) 0i$ $(iii) \rightarrow (iiii)$

By the Proposition 3.8, for all x, $y \in X$, $Xxy = Xx \cap Xy$. As $Xx \cap Xy = Xy \cap Xx = Xyx$, We see that Xxy = Xyx, for all x, $y \in X$. Using this we get that, for all a, b, $c \in X$, Xabc = Xbca = Xcab = Xacb = Xbac = Xcba. Suppose that $abc \in P$ and $ab \notin P$. Since Xis a strong B(1,2) \bar{s} near subtraction semigroup with property (α), by the Corollary 3.11, X is regular. Therefore abc = axabc \in Xabc \subseteq XP \subseteq P and therefore (ab)c \in P \Rightarrow c \in P. (as P is a completely prime ideal and since $ab \notin P$). Again suppose $abc \in P$ and $ac \notin P$. To get the desired result we proceed as follows. Now $acb \in Xacb = Xabc \subseteq XP \subseteq P$. Thus $acb = (ac)b \in P$ and If ac $\notin P$, then $b \in P$ as before. Continuing in this way it is easy to prove that if $abc \in P$ and if the product of any two of a,b,c does not fall in P, then the third falls in P. This proves (iii).

(iii) ⇒ (ii)

Let $ab \in P$ and $a \notin P$. First we observe that $xa \notin P$, for $x \in X$ satisfying a = axa. For, $xa \in P \Rightarrow a = a(xa) \in XP \subseteq P$ which is a contradiction. Also $xab \in XP \subseteq P$. Thus $xab \in P$ and $xa \notin P$. Since P is a primary ideal of X, $b^{k} \in P$, for some positive integer k. Now $b^{k} \in P \Rightarrow b \in \sqrt{P}$ and by Theorem $3.12\sqrt{P} = P$. Thus $b \in P$ and (ii) follows.

References

- J. C. Abbott, Sets, Lattices, and Boolean Algebras, Allyn and Bacon, Inc., Boston, Mass.1969.
- [2]. P. Dheena and G. Satheesh Kumar, On strongly regular near-subtraction semigroups, Commun. Korean Math. Soc. 22 (2007), no. 3, 323–330.
- [3]. Jayalakshmi.S A Study on Regularities in near rings, PhD thesis, Manonmaniam Sundaranar University, 2003
- [4]. Y. B. Jun and H. S. Kim, On ideals in subtraction algebras, Sci. Math. Jpn. 65 (2007),no. 1, 129-134.

- [5]. Y. B. Jun, H. S. Kim, and E. H. Roh, Ideal theory of subtraction algebras, Sci. Math.Jpn. 61 (2005), no. 3, 459-464.
- [6]. Y. B. Jun and K. H. Kim, Prime and irreducible ideals in subtraction algebras, Ital. J.Pure Appl. Math.
- [7]. S.Maharasi, V.Mahalakshmi, Strongly regular and Bi-ideals of Near-Subtraction Semigroup, IJMS Vol.12, No 1-29 (January-June 2013), pp. 97-102.
- [8]. PilzGunter, Near-rings, North Holland, Amsterdam, 1983.
- [9]. S. SeyadaliFathima, k(r,m) near subtraction semigroups, International Journal of Algebra, Vol. 5, 2011, no. 17, 827 - 834
- [10]. B. M. Schein, Difference semigroups, Comm. Algebra 20 (1992), no. 8, 2153-2169.
- [11]. B. Zelinka, Subtraction semigroups, Math. Bohem.120 (1995), no. 4, 445-447.