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1.  INTRODUCTION 

 As mobile devices are becoming 

increasingly popular for personal and business use it 

is more important to provide users the ability to 

understand and control the benefit and risk of 

running apps on these devices. The Android 

platform has emerged as the fastest growing smart 

phone operating system being used by about 200 

million devices, with around 700,000 devices being 

activated around the world daily. The access to 

privacy and security-relevant parts of Android’s rich 

API is controlled by an install-time application 

permission system. Every application must declare 

upfront what permissions it requires. The ubiquitous 

usage of these mobile devices poses new privacy 

and security threats. Possible access to personal 

information by unauthorized parties puts users at 

risk, and this is not where the risk ends. These 

devices include many sensors and nearly always 

with us and it provide deep insights in our digital 

and physical lives. A person often downloads and 

uses many apps from various unknown vendors, 

with each app providing some functionality. This 

different paradigm requires a different approach to 

deal with the risk of mobile devices, and offers 

distinct opportunities. 

 An important part of malware defense on 

mobile devices is to communicate the risk of 

installing an application to users, and to enable the 

user to make informed decisions about either to 

choose and install the specific apps or not. The 

majority of Android apps request multiple 

permissions. When a user sees what appears to be 

the same warning messages for almost every app, 

warnings quickly lose any effectiveness as the users 

are conditioned to ignore such warnings. 
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ABSTRACT 

Malicious applications hide in the sheer number of other normal apps, which makes 

their detection challenging. Developers are provided with improved tools to detect 

and react to security vulnerabilities. Although strong security measures are in place 

for most mobile operating systems, the area where these systems often fail is the 

reliance on the user to make decisions that impact the security of a mobile device. 

As Android relies on users to understand the permissions that an app is requesting 

and the installation decision based on the list of permissions. Proposed system work 

is for security measure of android applications. Instead of finding whether an 

application is malware or not after installation, proposed system detects the risk at 

installation level. SVM classifier is used for the app permissions’ classification. 

System assigns a risk score to each application being installed and displays the 

summary to user in terms of percentage.  
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2. RELATED WORK 

 The phenomenal growth of the Android 

platform in the past few years has made it a 

lucrative target of malicious applications (app) 

developers. There are numerous instances of 

malware apps that send premium rate SMS 

messages, track users private data, or apps that, 

even if not characterized as malware [3][5]. Several 

rules that represent risky permissions are used to 

flag apps [1]. However, such an approach is not very 

effective because it does not take into account the 

intended functionality of app [1] [9].  

 An effective risk signal is a signal that has a 

simple semantic meaning that is easy to understand 

by both users and the developers, is triggered by a 

small percentage of apps and is triggered by many 

malicious apps [9]. Existing approaches consider 

only the risks of the permission requested by an app 

and ignore both the benefits and what permissions 

are requested by other apps, thus having a limited 

effect. Over privileged applications expose users to 

unnecessary permission warnings and increase the 

impact of bug or vulnerability.  

 Stowaway is one of the tools, which detects 

over privilege in complied android applications. 

Stowaway is composed of two parts - a static 

analysis tool that determines what API calls an 

application makes, and a permission map that 

identifies what permissions are needed for each API 

call [11]. 

 At the core of Android security, security 

model is permission -based system that by default 

denies access to features or functionality that could 

negatively impact the user experience, the system 

or other applications installed on devices. Examples 

of these features are sending messages or making 

phone calls, which may incure monetary cost to the 

user [8]. 

In Android an application, must request a 

specific permission to be allowed access to a given 

resources. Android warns the user about 

permissions that an application requires before it is 

installed, with the expectation that the user will 

make an informed decision [10]. The effectiveness 

of such a defence to a large degree on choices is 

made by the users. Therefore, an important aspect 

of security on mobile devices is to communicate the 

risk of installing an app to users, and to help them 

make a good decision about whether to install a 

given app. 

Access control lists (ACLs) and permission –

based security models allow administrators and 

operating systems to restrict actions on specific 

resources. The main problem with ACLs and 

permission models in general is they are typically 

not designed by the users who will ultimately use 

the system. 

The Problem with these permission-based 

systems is that they are not designed with usability 

in mind *8+.Today’s smart phone operating systems, 

frequently fail to provide users with adequate 

control over and visibility into how third-party 

applications use their private data. These are said to 

be as shortcomings with TaintDroid, an efficient, 

system-wide dynamic taint tracking and analysis 

system capable of simultaneously tracking multiple 

sources of sensitive data. Taint Droid provides real 

time analysis by leveraging Android’s virtualized 

execution environment. Taint Droid incurs only 14% 

performance overhead on a CPU-bound micro-

benchmark and imposes negligible overhead on 

interactive third-party applications [6]. 

Applications that request more permission 

than needed fit into two general sets: applications 

that “do something ‘questionable’ or ’malicious’ on 

purpose” (e.g.,quietly collect information for 

advertising purposes), or applications that in 

advertently request additional permissions due to 

lack of understanding, laziness, or expected future 

use of a capability. In the first case, the mobile 

application actually requires permissions that may 

seem unnecessary to a user [4]. 

 
Fig 1. Sources of App Download [11] 
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3. SYSTEM MODEL 

3.1 SYSTEM ARCHITECTURE 

Architecture consists of different blocks 

such as input apk file, check requested permission, 

SQLite DB, Check threshold, calculating score.  

.apk file of the application is taken as an 

input by first block which user is trying to install. This 

.apk file is then extracted and provided for further 

checking. 

This extracted list of permissions is taken as 

an input by next block and it chooses the set of 

permissions to be processed for risk score 

calculations. This set of permissions is then 

considered for all the further calculations required. 

Permissions are shortlisted and provided to the next 

block. 

Calculating Score: This is an integral part of 

the system. It interacts with more than one system 

unit and provides the essential scoring. Using Risk 

Score Function and SQLite DB the score is calculated. 

Calculated score is checked for threshold value, and 

accordingly the application is categorized. 

SQLite DataBase (DB): This involves android 

based database. It stores the permissions which are 

widely used to invoke malicious applications. It also 

contains the statistics of these permissions. This 

data caused for the primary calculations on the 

permissions. 

Various permissions and their packages are 

extracted for processing. Digital signature for getting 

access needs to be extracted. From Google play 

store, user will be downloading the apk file. The 

system will make use of apk parser and it will scan 

the system and extract required data. It can add 

various package names. Digital signature need to be 

checked. Various rule lists or combination of 

different rules can be added.  

In this system SVM classifier is used for 

classifying the permissions required by different 

applications into different categories such as very 

high risk, high risk, and low risk permissions. This 

classification will be done on the previously available 

data of permissions. 

Risk score is assigned to the each 

permission, used by the application. Overall risk 

score of the application can be found out by 

calculating average of risk score of all the 

permissions required by the particular application 

Risk score can be calculated on the basis of 

predefined risk criteria for that single permission. for 

e.g. if my application using Bluetooth and Bluetooth 

having risk 0.5% then it will consider in total 

percentage of risk score. 

Various alerts are shown to the user. 

Percentage of an application being malicious is 

notified to user. This notification regarding the risk 

of the particular application is calculated according 

to overall risk score of the permissions required by 

that application. 

This alert is shown after downloading any 

application but before installing it so it will be 

helpful for the user to decide whether to install that 

application or not. Thus user will know about the 

most probable malicious application and help him to 

keep his device secure. 

 
SVM (LINEAR CLASSIFIER)  

In machine learning, support vector 

machines are supervised learning models with 

associated learning algorithms that analyse data and 

recognize patterns, used for classification and 

regression analysis. SVMs are helpful in text and 

hypertext categorization. 

SVM gives high accuracy, nice theoretical 

guarantees regarding over-fitting, and with an 

appropriate kernel they can work well even if you’re 

data isn’t linearly separable in the base feature 

space.  

Especially popular in text classification 

problems where very high-dimensional spaces are 

the norm. 
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Maximal Margin Hyperplanes 

If the training data are linearly separable then there 

exists a pair (w, b) such that 

w 
T
 xi + b ≥ 1, for all xi ɛ P 

w
 T 

xi + b ≤ −1, for all xi ɛ N 

with the decision rule given by 

fw ,b (x) = sgn(w
 T 

x + b) . 

w is termed the weight vector and b the bias (or − b 

is termed the threshold). The inequality constraints  

can be combined to give  

yi (w 
T
 x i + b) ≥ 1, for all x i ∈ P ∪ N 

Without loss of generality the pair (w, b) can be 

rescaled such that 

min |w 
T 

xi + b |= 1 ,                      
                                 i =1,..., l

 

this constraint defines the set of canonical 

hyperplanes on R
N
. 

 
Fig.3.SVM Hyperplane 

3.1 RISK SCORE AND RISK SIGNAL 

Two relevant measures of risk signal are the 

warning rate which defines how often a user 

receives warnings generated by the risk signal and 

the detection rate which defines what percentage of 

malicious apps will trigger the signal. 

To avoid over-exposing users to warnings 

generated by risk signals, it is desirable that a risk 

signal has a low warning rate. To be effective at 

detecting malicious applications a risk signal should 

have a high detection rate. Moreover a risk signal 

should be easily understandable by end users. After 

all, no risk signal can be used to stop the installation 

of an app by itself. The ultimate decision lies with 

the end user. If the user can understand why a 

warning is raised, then there is higher chance that 

they can process the information accordingly. 

Having an easy-to-understand risk signal also has the 

potential to benefit the overall eco-system of 

Android apps. 

A risk score for apps based on their 

requested permission sets and categories 

rrank(ai)  =  
|{a ϵ A|rscore(ai) ≥ rscore(ai)}| 

|A| 
Where  ai represents the dataset. 

The above gives a risk ranking relative to all apps in 

all categories. An alternative is to rank apps in each 

category separately, so that one has a risk ranking 

for an app relative to other apps in the same 

category. 

Rare critical permissions (#RCP (Ɵ) ): a critical 

permission is rare with respect to a threshold Ɵ  if it 

occurs in less than Ɵ percent of the Android Market 

applications.  

Rare pairs of critical permissions (#RPCP (Ɵ) ):  a pair 

of critical permissions to be rare with respect to a 

threshold Ɵ if the individual permission’s frequency 

is above threshold Ɵ but the frequency of 

occurrence of the two permissions as a pair is below 

Ɵ, and this can be defined as (#RPCP (Ɵ) ).  

3.3  DATASETS 

Market data sets- two data sets have been 

collected from Google Play spaced three years apart. 

The data sets are collected by crawling the Google 

Play app store, starting with the top apps in each 

category and then following all the links to other 

apps on each page.  

Market2011, the first data set, consists of 

157,856 apps available on Google Play in February 

2011. Market2014, the second data set, consists of 

324,658 apps, and has been collected in February 

2014. It can be assumed that apps in these two data 

sets are mostly benign. While it can be believed that 

a small number of malicious apps may be present in 

them, assuming that these data sets are dominated 

by benign ones. Market2014 data set is used for 

model generation and testing, and Market2011 data 

set is used for validation and market evolution 

analysis. 

Malicious apps request permissions in 

different ways from normal apps, and it indicates 
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that looking at permission information is in fact 

useful. It also shows that there may be a slow 

evolution in the market data set. 

4. RESULT 

Application permissions are checked 

according to the permission set provided by the 

system developed. Permission set of the existing 

applications is parsed. Permissions are classified 

using SVM classifier. Risk score is calculated 

according to permissions used by the application. 

Alert message is shown to user. 

Fig 4(a) shows the basic UI. Rules are added 

to check the permissions used by the application 

and accordingly risk score can be generated. 

Permissions will be checked before 

installing any application and risk score will be 

shown to the user. User will decide whether to 

install an application or not. 

Fig 4(b) shows installation of the 

application. After that risk score is calculated and 

prompted to the user as shown in Fig 4(c) 

 
    Fig. 4(a). Adding rules 

 
Fig. 4(b). Installing App 

 
      Fig.4(c). Risk score 

3. CONCLUSION 

 Extraction of lists of permission and 

checking these permissions for the detection of 

malicious is implemented. This extraction contains 

numbers of permissions related to network, 

communication, games, personal data etc. 

Permissions are considered for generating risk score 

function resulting in user friendly risk 

communication. User will be notified regarding the 

risk of the application before installing it, 

consequently preventing user from installing 

malicious applications.  
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4. FUTURE WORK 

 Application monitoring for the system can 

keep an eye on applications which may contain 

malicious permission. Monitoring can improve the 

projects efficiency in terms of functionality. This 

monitoring of application will check the flow of data 

and permission used by the apps 

7. REFERENCES 

[1]. B.P. Sarma, N. Li, C. Gates, R. Potharaju, C. 

Nita-Rotaru, and I. Molloy, 

“AndroidPermissions: A Perspective 

Combining Risks and Benets,” Proc. 17th 

ACM Symp. AccessControl Models and 

Technologies (SACMAT ’12), 2012. 

[2]. M. Nauman, S. Khan, and X. Zhang, “Apex: 

Extending Android Permission Modeland 

Enforcement with User-Dened Runtime 

Constraints,” Proc. Fifth ACM 

Symp.Information, Computer and Comm. 

Security, pp. 328-332, 2010. 

[3]. R. Stevens, C. Gibler, J. Crussell, J. Erickson, 

and H. Chen, “Investigating User Privacyin 

Android Ad Libraries,” Proc. IEEE Mobile 

Security Technologies (MoST ’12),2012. 

[4]. T. Vidas, N. Christin, and L.F. Cranor, 

“Curbing Android Permission Creep,” 

Proc.Workshop Web 2.0 Security and 

Privacy, vol. 2, 2011. 

[5]. A.P. Felt, K. Greenwood, and D. Wagner, 

“The Effectiveness of 

ApplicationPermissions,” Proc.Second 

USENIX Conf. Web Application 

Development, (WebApps ’11),2011. 

[6]. W. Enck, P. Gilbert, B. Chun, L.P. Cox, J. 

Jung, P. McDaniel, and A.N 

Sheth,“TaintDroid: An Information-Flow 

Tracking System for Realtime Privacy 

Monitoringon Smartphones,” Proc. Ninth 

USENIX Conf. Operating Systems Design 

andImplementation, article 1-6, 2010. 

[7]. M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. 

Jiang, “RiskRanker: Scalable and 

AccurateZero-Day Android Malware 

Detection,” Proc. 10th Int’l Conf. Mobile 

Systems,Applications, and Services, 

(MobiSys ’12), pp. 281-294, 2012. 

[8]. D. Barrera, H.G. Kayacik, P.C. van Oorschot, 

and A. Somayaji, “A Methodologyfor 

Empirical Analysis of Permission-Based 

Security Models and Its Application 

toAndroid,”Proc. 17th ACM Conf. Computer 

and Comm. Security, pp. 73-84, 2010. 

[9]. Christopher S. Gates, Jing Chen, Ninghui Li, 

Senior Member, IEEE, and Robert 

W.Proctor, “Effective Risk Communication 

for Android Apps,” IEEE Transactions 

onDependable and Secure Computing, vol. 

11, no. 3, 2014. 

[10]. A.P. Felt, E. Ha, S. Egelman, A. Haney, E. 

Chin, and D. Wagner, “Android 

Permissions:User Attention, 

Comprehension, and Behavior,” Proc. 

Eighth Symp. Usable Privacy andSecurity, 

article 3, 2012. 

[11]. https//androidobservatory.org/stats 


