

International Journal of Engineering Research-Online

A Peer Reviewed International Journal
Email:editorijoer@gmail.com http://www.ijoer.in

Vol.4., Issue.3., 2016
(May-June)

295 DEEPALI SARWADE et al.,

1. INTRODUCTION

 As mobile devices are becoming

increasingly popular for personal and business use it

is more important to provide users the ability to

understand and control the benefit and risk of

running apps on these devices. The Android

platform has emerged as the fastest growing smart

phone operating system being used by about 200

million devices, with around 700,000 devices being

activated around the world daily. The access to

privacy and security-relevant parts of Android’s rich

API is controlled by an install-time application

permission system. Every application must declare

upfront what permissions it requires. The ubiquitous

usage of these mobile devices poses new privacy

and security threats. Possible access to personal

information by unauthorized parties puts users at

risk, and this is not where the risk ends. These

devices include many sensors and nearly always

with us and it provide deep insights in our digital

and physical lives. A person often downloads and

uses many apps from various unknown vendors,

with each app providing some functionality. This

different paradigm requires a different approach to

deal with the risk of mobile devices, and offers

distinct opportunities.

 An important part of malware defense on

mobile devices is to communicate the risk of

installing an application to users, and to enable the

user to make informed decisions about either to

choose and install the specific apps or not. The

majority of Android apps request multiple

permissions. When a user sees what appears to be

the same warning messages for almost every app,

warnings quickly lose any effectiveness as the users

are conditioned to ignore such warnings.

RESEARCH ARTICLE ISSN: 2321-7758

RISK SCORE ANALYSIS FOR ANDROID APPLICATIONS

VANITA CHAUDHARY1, DEEPALI SARWADE1, ASHA KAMBLE1, SAKSHI BHOSALE1,

MADHAVI DHARMADHIKARI2, VAISHALI KOLHE2
1BE Student Of Computer Engineering Department, DYPCOE, Akurdi, SPPU, India

2Department Of Computer Engineering, DYPCOE, Akurdi, SPPU, India

ABSTRACT

Malicious applications hide in the sheer number of other normal apps, which makes

their detection challenging. Developers are provided with improved tools to detect

and react to security vulnerabilities. Although strong security measures are in place

for most mobile operating systems, the area where these systems often fail is the

reliance on the user to make decisions that impact the security of a mobile device.

As Android relies on users to understand the permissions that an app is requesting

and the installation decision based on the list of permissions. Proposed system work

is for security measure of android applications. Instead of finding whether an

application is malware or not after installation, proposed system detects the risk at

installation level. SVM classifier is used for the app permissions’ classification.

System assigns a risk score to each application being installed and displays the

summary to user in terms of percentage.

Keywords: Risk communication, Risk score, malware.

©KY Publications

International Journal of Engineering Research-Online

A Peer Reviewed International Journal
Email:editorijoer@gmail.com http://www.ijoer.in

Vol.4., Issue.3., 2016
(May-June)

296 DEEPALI SARWADE et al.,

2. RELATED WORK

 The phenomenal growth of the Android

platform in the past few years has made it a

lucrative target of malicious applications (app)

developers. There are numerous instances of

malware apps that send premium rate SMS

messages, track users private data, or apps that,

even if not characterized as malware [3][5]. Several

rules that represent risky permissions are used to

flag apps [1]. However, such an approach is not very

effective because it does not take into account the

intended functionality of app [1] [9].

 An effective risk signal is a signal that has a

simple semantic meaning that is easy to understand

by both users and the developers, is triggered by a

small percentage of apps and is triggered by many

malicious apps [9]. Existing approaches consider

only the risks of the permission requested by an app

and ignore both the benefits and what permissions

are requested by other apps, thus having a limited

effect. Over privileged applications expose users to

unnecessary permission warnings and increase the

impact of bug or vulnerability.

 Stowaway is one of the tools, which detects

over privilege in complied android applications.

Stowaway is composed of two parts - a static

analysis tool that determines what API calls an

application makes, and a permission map that

identifies what permissions are needed for each API

call [11].

 At the core of Android security, security

model is permission -based system that by default

denies access to features or functionality that could

negatively impact the user experience, the system

or other applications installed on devices. Examples

of these features are sending messages or making

phone calls, which may incure monetary cost to the

user [8].

In Android an application, must request a

specific permission to be allowed access to a given

resources. Android warns the user about

permissions that an application requires before it is

installed, with the expectation that the user will

make an informed decision [10]. The effectiveness

of such a defence to a large degree on choices is

made by the users. Therefore, an important aspect

of security on mobile devices is to communicate the

risk of installing an app to users, and to help them

make a good decision about whether to install a

given app.

Access control lists (ACLs) and permission –

based security models allow administrators and

operating systems to restrict actions on specific

resources. The main problem with ACLs and

permission models in general is they are typically

not designed by the users who will ultimately use

the system.

The Problem with these permission-based

systems is that they are not designed with usability

in mind *8+.Today’s smart phone operating systems,

frequently fail to provide users with adequate

control over and visibility into how third-party

applications use their private data. These are said to

be as shortcomings with TaintDroid, an efficient,

system-wide dynamic taint tracking and analysis

system capable of simultaneously tracking multiple

sources of sensitive data. Taint Droid provides real

time analysis by leveraging Android’s virtualized

execution environment. Taint Droid incurs only 14%

performance overhead on a CPU-bound micro-

benchmark and imposes negligible overhead on

interactive third-party applications [6].

Applications that request more permission

than needed fit into two general sets: applications

that “do something ‘questionable’ or ’malicious’ on

purpose” (e.g.,quietly collect information for

advertising purposes), or applications that in

advertently request additional permissions due to

lack of understanding, laziness, or expected future

use of a capability. In the first case, the mobile

application actually requires permissions that may

seem unnecessary to a user [4].

Fig 1. Sources of App Download [11]

International Journal of Engineering Research-Online

A Peer Reviewed International Journal
Email:editorijoer@gmail.com http://www.ijoer.in

Vol.4., Issue.3., 2016
(May-June)

297 DEEPALI SARWADE et al.,

3. SYSTEM MODEL

3.1 SYSTEM ARCHITECTURE

Architecture consists of different blocks

such as input apk file, check requested permission,

SQLite DB, Check threshold, calculating score.

.apk file of the application is taken as an

input by first block which user is trying to install. This

.apk file is then extracted and provided for further

checking.

This extracted list of permissions is taken as

an input by next block and it chooses the set of

permissions to be processed for risk score

calculations. This set of permissions is then

considered for all the further calculations required.

Permissions are shortlisted and provided to the next

block.

Calculating Score: This is an integral part of

the system. It interacts with more than one system

unit and provides the essential scoring. Using Risk

Score Function and SQLite DB the score is calculated.

Calculated score is checked for threshold value, and

accordingly the application is categorized.

SQLite DataBase (DB): This involves android

based database. It stores the permissions which are

widely used to invoke malicious applications. It also

contains the statistics of these permissions. This

data caused for the primary calculations on the

permissions.

Various permissions and their packages are

extracted for processing. Digital signature for getting

access needs to be extracted. From Google play

store, user will be downloading the apk file. The

system will make use of apk parser and it will scan

the system and extract required data. It can add

various package names. Digital signature need to be

checked. Various rule lists or combination of

different rules can be added.

In this system SVM classifier is used for

classifying the permissions required by different

applications into different categories such as very

high risk, high risk, and low risk permissions. This

classification will be done on the previously available

data of permissions.

Risk score is assigned to the each

permission, used by the application. Overall risk

score of the application can be found out by

calculating average of risk score of all the

permissions required by the particular application

Risk score can be calculated on the basis of

predefined risk criteria for that single permission. for

e.g. if my application using Bluetooth and Bluetooth

having risk 0.5% then it will consider in total

percentage of risk score.

Various alerts are shown to the user.

Percentage of an application being malicious is

notified to user. This notification regarding the risk

of the particular application is calculated according

to overall risk score of the permissions required by

that application.

This alert is shown after downloading any

application but before installing it so it will be

helpful for the user to decide whether to install that

application or not. Thus user will know about the

most probable malicious application and help him to

keep his device secure.

SVM (LINEAR CLASSIFIER)

In machine learning, support vector

machines are supervised learning models with

associated learning algorithms that analyse data and

recognize patterns, used for classification and

regression analysis. SVMs are helpful in text and

hypertext categorization.

SVM gives high accuracy, nice theoretical

guarantees regarding over-fitting, and with an

appropriate kernel they can work well even if you’re

data isn’t linearly separable in the base feature

space.

Especially popular in text classification

problems where very high-dimensional spaces are

the norm.

International Journal of Engineering Research-Online

A Peer Reviewed International Journal
Email:editorijoer@gmail.com http://www.ijoer.in

Vol.4., Issue.3., 2016
(May-June)

298 DEEPALI SARWADE et al.,

Maximal Margin Hyperplanes

If the training data are linearly separable then there

exists a pair (w, b) such that

w
T
 xi + b ≥ 1, for all xi ɛ P

w
 T

xi + b ≤ −1, for all xi ɛ N

with the decision rule given by

fw ,b (x) = sgn(w
 T

x + b) .

w is termed the weight vector and b the bias (or − b

is termed the threshold). The inequality constraints

can be combined to give

yi (w
T
 x i + b) ≥ 1, for all x i ∈ P ∪ N

Without loss of generality the pair (w, b) can be

rescaled such that

min |w
T

xi + b |= 1 ,
 i =1,..., l

this constraint defines the set of canonical

hyperplanes on R
N
.

Fig.3.SVM Hyperplane

3.1 RISK SCORE AND RISK SIGNAL

Two relevant measures of risk signal are the

warning rate which defines how often a user

receives warnings generated by the risk signal and

the detection rate which defines what percentage of

malicious apps will trigger the signal.

To avoid over-exposing users to warnings

generated by risk signals, it is desirable that a risk

signal has a low warning rate. To be effective at

detecting malicious applications a risk signal should

have a high detection rate. Moreover a risk signal

should be easily understandable by end users. After

all, no risk signal can be used to stop the installation

of an app by itself. The ultimate decision lies with

the end user. If the user can understand why a

warning is raised, then there is higher chance that

they can process the information accordingly.

Having an easy-to-understand risk signal also has the

potential to benefit the overall eco-system of

Android apps.

A risk score for apps based on their

requested permission sets and categories

rrank(ai) =
|{a ϵ A|rscore(ai) ≥ rscore(ai)}|

|A|
Where ai represents the dataset.

The above gives a risk ranking relative to all apps in

all categories. An alternative is to rank apps in each

category separately, so that one has a risk ranking

for an app relative to other apps in the same

category.

Rare critical permissions (#RCP (Ɵ)): a critical

permission is rare with respect to a threshold Ɵ if it

occurs in less than Ɵ percent of the Android Market

applications.

Rare pairs of critical permissions (#RPCP (Ɵ)): a pair

of critical permissions to be rare with respect to a

threshold Ɵ if the individual permission’s frequency

is above threshold Ɵ but the frequency of

occurrence of the two permissions as a pair is below

Ɵ, and this can be defined as (#RPCP (Ɵ)).

3.3 DATASETS

Market data sets- two data sets have been

collected from Google Play spaced three years apart.

The data sets are collected by crawling the Google

Play app store, starting with the top apps in each

category and then following all the links to other

apps on each page.

Market2011, the first data set, consists of

157,856 apps available on Google Play in February

2011. Market2014, the second data set, consists of

324,658 apps, and has been collected in February

2014. It can be assumed that apps in these two data

sets are mostly benign. While it can be believed that

a small number of malicious apps may be present in

them, assuming that these data sets are dominated

by benign ones. Market2014 data set is used for

model generation and testing, and Market2011 data

set is used for validation and market evolution

analysis.

Malicious apps request permissions in

different ways from normal apps, and it indicates

International Journal of Engineering Research-Online

A Peer Reviewed International Journal
Email:editorijoer@gmail.com http://www.ijoer.in

Vol.4., Issue.3., 2016
(May-June)

299 DEEPALI SARWADE et al.,

that looking at permission information is in fact

useful. It also shows that there may be a slow

evolution in the market data set.

4. RESULT

Application permissions are checked

according to the permission set provided by the

system developed. Permission set of the existing

applications is parsed. Permissions are classified

using SVM classifier. Risk score is calculated

according to permissions used by the application.

Alert message is shown to user.

Fig 4(a) shows the basic UI. Rules are added

to check the permissions used by the application

and accordingly risk score can be generated.

Permissions will be checked before

installing any application and risk score will be

shown to the user. User will decide whether to

install an application or not.

Fig 4(b) shows installation of the

application. After that risk score is calculated and

prompted to the user as shown in Fig 4(c)

 Fig. 4(a). Adding rules

Fig. 4(b). Installing App

 Fig.4(c). Risk score

3. CONCLUSION

 Extraction of lists of permission and

checking these permissions for the detection of

malicious is implemented. This extraction contains

numbers of permissions related to network,

communication, games, personal data etc.

Permissions are considered for generating risk score

function resulting in user friendly risk

communication. User will be notified regarding the

risk of the application before installing it,

consequently preventing user from installing

malicious applications.

International Journal of Engineering Research-Online

A Peer Reviewed International Journal
Email:editorijoer@gmail.com http://www.ijoer.in

Vol.4., Issue.3., 2016
(May-June)

300 DEEPALI SARWADE et al.,

4. FUTURE WORK

 Application monitoring for the system can

keep an eye on applications which may contain

malicious permission. Monitoring can improve the

projects efficiency in terms of functionality. This

monitoring of application will check the flow of data

and permission used by the apps

7. REFERENCES

[1]. B.P. Sarma, N. Li, C. Gates, R. Potharaju, C.

Nita-Rotaru, and I. Molloy,

“AndroidPermissions: A Perspective

Combining Risks and Benets,” Proc. 17th

ACM Symp. AccessControl Models and

Technologies (SACMAT ’12), 2012.

[2]. M. Nauman, S. Khan, and X. Zhang, “Apex:

Extending Android Permission Modeland

Enforcement with User-Dened Runtime

Constraints,” Proc. Fifth ACM

Symp.Information, Computer and Comm.

Security, pp. 328-332, 2010.

[3]. R. Stevens, C. Gibler, J. Crussell, J. Erickson,

and H. Chen, “Investigating User Privacyin

Android Ad Libraries,” Proc. IEEE Mobile

Security Technologies (MoST ’12),2012.

[4]. T. Vidas, N. Christin, and L.F. Cranor,

“Curbing Android Permission Creep,”

Proc.Workshop Web 2.0 Security and

Privacy, vol. 2, 2011.

[5]. A.P. Felt, K. Greenwood, and D. Wagner,

“The Effectiveness of

ApplicationPermissions,” Proc.Second

USENIX Conf. Web Application

Development, (WebApps ’11),2011.

[6]. W. Enck, P. Gilbert, B. Chun, L.P. Cox, J.

Jung, P. McDaniel, and A.N

Sheth,“TaintDroid: An Information-Flow

Tracking System for Realtime Privacy

Monitoringon Smartphones,” Proc. Ninth

USENIX Conf. Operating Systems Design

andImplementation, article 1-6, 2010.

[7]. M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X.

Jiang, “RiskRanker: Scalable and

AccurateZero-Day Android Malware

Detection,” Proc. 10th Int’l Conf. Mobile

Systems,Applications, and Services,

(MobiSys ’12), pp. 281-294, 2012.

[8]. D. Barrera, H.G. Kayacik, P.C. van Oorschot,

and A. Somayaji, “A Methodologyfor

Empirical Analysis of Permission-Based

Security Models and Its Application

toAndroid,”Proc. 17th ACM Conf. Computer

and Comm. Security, pp. 73-84, 2010.

[9]. Christopher S. Gates, Jing Chen, Ninghui Li,

Senior Member, IEEE, and Robert

W.Proctor, “Effective Risk Communication

for Android Apps,” IEEE Transactions

onDependable and Secure Computing, vol.

11, no. 3, 2014.

[10]. A.P. Felt, E. Ha, S. Egelman, A. Haney, E.

Chin, and D. Wagner, “Android

Permissions:User Attention,

Comprehension, and Behavior,” Proc.

Eighth Symp. Usable Privacy andSecurity,

article 3, 2012.

[11]. https//androidobservatory.org/stats

