

International Journal of Engineering Research-Online

A Peer Reviewed International Journal
Email:editorijoer@gmail.com http://www.ijoer.in

Vol.4., Issue.3., 2016
(May-June)

146 MADHURA SUBRAY HEGDE, VASANTHA RAGHVAN

I. INTRODUCTION

 Sonarqube is a static and dynamic code

analysis tool and dashboard, that lets user not only

inspect code, but also track all metrics and publish it

in a dashboard, manage code quality, and much

more. Custom plug-ins intensify Sonarqube

functionality in different ways: it support static

analysis of various languages, addition of new

metrics to the tool, or changingthe way of

presenting information and managing.

Sonarqube plug-in projects can be developed using

Maven, with the added advantage that leverage the

project folder structure and dependency

maintenance mechanism. A Sonarqubecustom plug-

in has three requirements, in terms of Maven

configuration, this makes them different from a

regular Java project:

1. Anexclusive type of packaging, sonar-

plugin. This way of packaging is used to fine

tune the project life-cycle without

compelling to tweak plug-in configuration

in the pom.xml file.

2. A reliance with Sonarqube plug-in API.

Artifact coordinates are:

org.codehaus.sonar:sonar-plugin-api.

3. A build plug-in will take care of the settings

of packaging the plug-in for releasing it into

a Sonarqube installation. Settings for the

Sonarqube packaging plug-in must include

the plug-in key and the plug-in main class.

The POM file for the plug-in looks as follows[1] :

.....(CONTINUE)

REVIEW ARTICLE ISSN: 2321-7758

SURVEY: SONARQUBE CUSTOM PLUG-INS WRITTING

MADHURA SUBRAY HEGDE1,VASANTHA RAGHVAN2
1M. Tech in Computer Engineering, SJCE, Mysuru, Karnataka

2Professor in Computer Engineering, SJCE, Mysuru, Karnataka

ABSTRACT
A Sonarqube custom plugin is a collection of Java objects that implement extension

points. These extension points are abstract classes or interfaces which model a

portion of the system and define what needs to be implemented. With the help of

various abstract interfaces and abstract classes’ metrics, sensors, decorator and

widget are developed. These modules form a complete custom plugin.

Keywords- Sonarqube; Custom plugin; Sensor; Metrics; Decorates; Maven;
©KY Publications

International Journal of Engineering Research-Online

A Peer Reviewed International Journal
Email:editorijoer@gmail.com http://www.ijoer.in

Vol.4., Issue.3., 2016
(May-June)

147 MADHURA SUBRAY HEGDE, VASANTHA RAGHVAN

II. THE CUSTOM PLUG-IN MAIN CLASS

The entry point of every Sonarqubecustom plug-in is

a class that must extend the org.sonar.api.Sonar

Plugin abstract class. A custom plug-in is designed as

an implementations of the interface org.sonar.api.

Extension.

The Sonar qube custom plug-in main class has

unique purpose of defining which extensions will be

contributed by the plug-in – sensors,metrics,

widgets, decorators. The custom plug-in main class

looks as follows:

Metric classes introduces custom metrics, sensor

scans the code, collects the metrics and stores all of

them in Sonarqube, a widget is displayed on

dashboard to view the collected information by the

users and decorators are used for calculating

derived values for a project resource.

When designing a custom Sonarqube [2] plug-in, it’s

important to distinguish between Sensors and

Decorators. A Sensor of custom plugin is executed

only once per analysis. The project folder structure

is traversed recursively by sensor to compute metric

values, i.e. with the help of an external tool, and

stores the information in Sonarqube database. After

all sensor are executed a decorator is executed for

each resource once. Decorators can query existing

metric values, compute derived values and store all

of them in Sonarqube database. Decorators are

essentially used to compute aggregated values or to

compute metrics that depends on values coming

from different sources.

I. Custom Metrics and Sensors DEFINATION

The custom plug-in collects all information from IDE

configuration files, i.e. all the data about the project

configuration.The custom plug-inrely on an

EclipseAnalyzer class, which does the hard work.

A Metric class defines the set of metrics called

custom metrics that the plug-in will gather. A Sensor

class will execute the EclipseAnalyzer on behalf of

the analysis, and the result is storedin the

Sonarqube API.

II. Defining a Metric Class

A Metric class in Sonarqube API is very simple:

Createa classthat implements the

interface org.sonar.api.measures.Metrics. This

interface specifies only one method to be

implemented: List<org.sonar.api.Metric>getMetrics

(). That is nothing but a simple method which

returns a list of Metric objects.

Each Metric object which is returned will represent a

Metric entity in Sonarqube model. Each Metric can

have value of a certain data type like Boolean,

string, integer values, floating-point values,

percentages, etc., bequalitativeor quantitative,

aggregated automatically and other characteristics.

The simplest method to define a Metric is to make

use of the Metric builder pattern, as shown below:

International Journal of Engineering Research-Online

A Peer Reviewed International Journal
Email:editorijoer@gmail.com http://www.ijoer.in

Vol.4., Issue.3., 2016
(May-June)

148 MADHURA SUBRAY HEGDE, VASANTHA RAGHVAN

After defining needed metrics, the metrics must be

implemented as follows:

III. Defining a Sensor Class

After defining the metric class a Sensor class must

be defined. Sensor class in Sonarqube API is very

simple to define:

Createa class which implementing the

interface org.sonar.api.batch.Sensor and then

implement the two methods.

The first one is

booleanshouldExecuteOnProject(org.sonar.api.reso

urces.Project), this tells Sonarqubeanalyser whether

it should execute on any specific project or not. The

Project object provides all the information needed

to take decision, like the project name, analysis

type,language, the list of modules it contains, etc.

The second one is

voidanalyse(org.sonar.api.Resources.Project,org.so

nar.api.batch.SensorContext). This is the method

inside whichmetric values are computed,the project

resources will be scanned, and saved in Sonarqube

database.

To access the project directory structure, the

appropriate way is to leverage the dependency is to

injection mechanism of the Plexus container where

SonarQube analysis runs. The constructor is defined

as follows and Plexus will perform other tasks:

Independent of the method used to compute metric

values, once they are available, they will be store

using the saveMeasure on org.sonar.api.measures.

Measure method of

interface org.sonar.api.batch.Sensor Context.

A Measure is created using a simple constructor

with metric id and value. The sensor context

basically will determine the resource to which the

metric value belongs to as shown below:

IV. Creating Widgets

The aim of the widget to be created is to simply

showcase the collected and computed project-level

information in project’s dashboard. For example

which type of project user has configured in the IDE,

the dependencies that exist with other projects, etc.

Defining a widget class is very simple [4]:

 Create a class extending org.sonar.api.web.

AbstractRubyTemplate and

implementing org.sonar.api.web.RubyRails

Widget.

 Annotate the class

with @org.sonar.api.web.UserRole. Add as

arguments the users that will have access

to this widget: Admin, User,Code Viewer.

 User can also annotate the class

with @org.sonar.api.web.Description.

International Journal of Engineering Research-Online

A Peer Reviewed International Journal
Email:editorijoer@gmail.com http://www.ijoer.in

Vol.4., Issue.3., 2016
(May-June)

149 MADHURA SUBRAY HEGDE, VASANTHA RAGHVAN

Parameters must be added as the

description for the widget, as it will be

displayed in Sonarqube dashboard

configuration view. This annotation also

tells the other users what the widget meant

to do.

 Implement getId() and getTitle() methods.

These methods simply returns a string with

the widget id and title. The id must be

unique and the title will be showed later in

Sonarqube dashboard configuration view.

 Implement getTemplatePath() method.

This function will return a path where the

Ruby page will be residing and can be

found. The path must be relative to the

custom plug-in project classpathand also it

must start with a forward slash.

V. SonarQube Development Mode

Sonarqube provides with a development mode to

prevent developer’s sanity. This mode of

development will automate the deployment process

as a Maven plug-in, downloading a Sonarqube [3]

instance from the internet and then running it as a

child process of the Maven process. To launch

Sonarqube’sdevelopment mode the following

command is used:

Mvn install org.codehaus.sonar:sonar-dev-maven-

plugin:”version”:start-war -Dsonar.runtime

VI. Conclusion

 Sonarqube custom plugin can be developed

by using the various abstract classes and interfaces.

Also the main modules that are necessary for the

custom plugin are custom metrics, sensors,

decorators and widget, which are simple java

objects.

REFERENCE

[1] “Writing your own sonar plug-in”, Dr.

Macphail’s Trance

[2] G. Ann Campbell and Patroklos P.

Papapetrou, “Sonarqube in action”

[3] Rudolf Ferenc, Laszl ´ o Lang ´ o, Istv ´ an

Siket, Tibor Gyim ´ othy, “SourceMeter

SonarQube plug-in”, IEEE International

Working Conference on Source Code

Analysis and Manipulation

[4] A page from Sonarqube documentation

“http://www.sonarqube.org/tag/plugins/”

http://www.sonarqube.org/tag/plugins/

