

International Journal of Engineering Research-Online

A Peer Reviewed International Journal
Email:editorijoer@gmail.com http://www.ijoer.in

Vol.4., Issue.2., 2016
(Mar-Apr)

659 E. BHARAT BABU et al.,

INTRODUCTION

 Basically , A* search algorithm is an

algorithm for finding an item with specified

properties among a collection of items which are

coded into a computer program, that look for clues

to return what is wanted. The items may be stored

individually as records in a database; or may be

elements of a search space defined by a

mathematical formula or procedure. A graph is

connected if there is a path between every pair of

vertices. A connected component of a graph G is a

maximal connected sub graph of G.A tree is an

undirected graph T such that T is connected. T has

no cycles. This definition of tree is different from the

one of a rooted tree. A forest is an undirected graph

without cycles. The connected components of a

forest are trees.

 A* is a algorithm that is widely used

in path finding and graph traversal, the process of

plotting an efficiently traversable path between

RESEARCH ARTICLE ISSN: 2321-7758

HARDWARE IMPLEMENTATION OF A* ALGORITHM SHORTEST PATH

ALGORITHM

E. BHARAT BABU1, V.MANIDEEP2,T .LAKSHMI MANOGNA2,V.GEETHASRI2,HARI

KRISHNA2
1Assistant professor 2Undergraduate students

Department of ECE
Padmasri Dr B.V. Raju Institute of Technology, Medak (Dist), Telangana, India

ABSTRACT

This electronic document presents the implementation of A* Algorithm in a known

environment. We will keep watch over the environment by regularly walking or

travelling around it.A* Algorithm can be implemented only in known environment.

A* algorithm is useful for an environment that can be represented as a graph with

the presence of nodes that act as the decision making centers. It solves problems by

searching among all possible paths to the solution (goal) for the one that incurs the

smallest cost (least distance travelled, shortest time, etc.), and among these paths it

first considers the ones that appear to lead most quickly to the solution. It is

formulated in terms of weighted graphs: starting from a specific node of a graph, it

constructs a tree of paths starting from that node, expanding paths one step at a

time, until one of its paths ends at the predetermined goal node. We can implement

A* Algorithm by using any programming language . But we consider the case of

implementing A* algorithm by using FPGA technology in Verilog code. Here we use

FPGA as it has unique feature like parallel processing and it is reprogrammable. In

this regard, we are proposing VLSI efficient scheme for the A* algorithm with FPGA

implementation. It is simulated using Xilinx ISE14.7 software and implemented on

Spartan 6 FPGA board.

Keywords—A* Algorithm, Nodes, path planning

©KY Publications

International Journal of Engineering Research-Online

A Peer Reviewed International Journal
Email:editorijoer@gmail.com http://www.ijoer.in

Vol.4., Issue.2., 2016
(Mar-Apr)

660 E. BHARAT BABU et al.,

multiple points, called nodes. Noted for

its performance and accuracy, it enjoys widespread

use. However, in practical travel-routing systems, it

is generally outperformed by algorithms which can

pre-process the graph to attain better

performance, although other work has found A* to

be superior to other approaches.

 Peter Hart, Nils Nilsson and Bertram

Raphael of Stanford Research Institute first

described the algorithm in 1968. It is an extension

of Edsger Dijkstra's 1959 algorithm. A* achieves

better performance by using heuristics to guide its

search. Hewas trying to improve the path planning

done by Shakey the Robot, a prototype robot that

could navigate through a room containing obstacles.

This path-finding algorithm, that Nilsson called A1,

was a faster version of the then best known

method, Dijkstra's algorithm, for finding shortest

paths in graphs. Bertram Raphael suggested some

significant improvements upon this algorithm,

calling the revised version A2. Then Peter E. Hart

introduced an argument that established A2, with

only minor changes, to be the best possible

algorithm for finding shortest paths. Hart, Nilsson

and Raphael then jointly developed a proof that the

revised A 2 algorithm was optimal for finding

shortest paths under certain well-defined

conditions.

Main Idea

 The main idea of this paper is to develop a

FPGA based robot that moves along a path that has

been decided. A* is an algorithm that is used to find

a shortest path. A* is calculated using heuristic

approach which includes cost function. The cost

function is given by

F(n)=g(n)+h(n)

 Where g(n) determines the distance

between goal and the current position h(n) indicates

the distance between starting point and current

point. Typical implementations of A* use a priority

queue to perform the repeated selection of

minimum (estimated) cost nodes to expand. This

priority queue is known as the open setor fringe. At

each step of the algorithm, the node with the

lowest f(x) value is removed from the queue,

the f and g values of its neighbors are updated

accordingly, and these neighbors are added to the

queue. The algorithm continues until a goal node

has a lower f value than any node in the queue (or

until the queue is empty). The f value of the goal is

then the length of the shortest path, since h at the

goal is zero in an admissible heuristic.

 The algorithm described so far gives us only

the length of the shortest path. To find the actual

sequence of steps, the algorithm can be easily

revised so that each node on the path keeps track of

its predecessor. After this algorithm is run, the

ending node will point to its predecessor, and so on,

until some node's predecessor is the start node.

Environment and algorithm

A-Star requires a distance function from start

configuration to goal configuration. It does not need

an exact distance, just an estimate of how long it

would take to get from start configuration to the

goal configuration, in the best case. The A-Star

algorithm combines features of uniform-cost search

and pure heuristic search to efficiently compute

optimal solutions. A-star uses the distance between

the current configuration and the target

configuration and moves to the node that has the

smallest distance.

Implementation

 There are a number of simple optimizations

or implementation details that can significantly

affect the performance of an A* implementation.

The first detail to note is that the way the priority

queue handles ties can have a significant effect on

performance in some situations. If ties are broken so

the queue behaves in a LIFO manner, A* will behave

like depth-first search among equal cost paths

(avoiding exploring more than one equally optimal

solution).

 When a path is required at the end of the

search, it is common to keep with each node a

reference to that node's parent. At the end of the

International Journal of Engineering Research-Online

A Peer Reviewed International Journal
Email:editorijoer@gmail.com http://www.ijoer.in

Vol.4., Issue.2., 2016
(Mar-Apr)

661 E. BHARAT BABU et al.,

search these references can be used to recover the

optimal path. If these references are being kept then

it can be important that the same node doesn't

appear in the priority queue more than once (each

entry corresponding to a different path to the node,

and each with a different cost). A standard approach

here is to check if a node about to be added already

appears in the priority queue. If it does, then the

priority and parent pointers are changed to

correspond to the lower cost path. A

standard binary heap based priority queue does not

directly support the operation of searching for one

of its elements, but it can be augmented with a hash

table that maps elements to their position in the

heap, allowing this decrease-priority operation to be

performed in logarithmic time. Alternatively,

a Fibonacci heap can perform the same decrease-

priority operations in constant amortized time.

 For the first iteration, the current

intersection will be the starting point, and the

distance to it (the intersection's label) will be zero.

For subsequent iterations (after the first), the

current intersection will be the closest unvisited

intersection to the starting point (this will be easy to

find).

 From the current intersection, update the

distance to every unvisited intersection that is

directly connected to it. This is done by determining

the sum of the distance between an unvisited

intersection and the value of the current

intersection, and relabeling the unvisited

intersection with this value (the sum), if it is less

than its current value. In effect, the intersection is

relabeled if the path to it through the current

intersection is shorter than the previously known

paths.

 To facilitate shortest path identification, in

pencil, mark the road with an arrow pointing to the

relabeled intersection if you label/relabel it, and

erase all others pointing to it. After you have

updated the distances to each neighboring

interaction, mark the current intersection as visited,

and select the unvisited intersection with lowest

distance (from the starting point) – or the lowest

label—as the current intersection. Nodes marked as

visited are labeled with the shortest path from the

starting point to it and will not be revisited or

returned to.

Algorithm

1) Put the start node on the list OPEN and

calculate the cost function f (n). {h (n) = 0;

g(n) = distance between the goal and the

start position, f(n) = g(n).}

2) Remove from the List OPEN the node with

the smallest cost function and put it on

CLOSED. This is the node n. (Incase two or

more nodes have the cost function,

arbitrarily resolve ties. If one of the nodes is

the goal node, then select the goal node

3) If n is the goal node then terminate the

algorithm and use the pointers to obtain

the solution path. Otherwise, continue

4) Determine all the successor nodes of n and

compute the cost function for each

successor not on list CLOSED.

5) Associate with each successor not on list

OPEN or CLOSED the cost calculated and

put these on the list OPEN, placing pointers

to n (n is the parent node).

6) Associate with any successors already on

OPEN the smaller of the cost values just

calculated and the previous cost value. (

min(new f(n), old f(n)))

7) Go to step 2.

Let us assume the h values of S=7,A=6,B=2,C=1,G=0.

By taking into consideration these values we may

find the path as shown in the following figures

below

 Initially the path from every node is taken

as zero except the source and goal nodes .The cost

from is determined as the distance between each

path i.e, from source to destination. The cost from S

TO Similarly the cost from AS

=1,AB=2,SB=4,BC=2,AC=5,CG=3,AG=12.In this

environment the source is taken as S and the

destination position is G.

International Journal of Engineering Research-Online

A Peer Reviewed International Journal
Email:editorijoer@gmail.com http://www.ijoer.in

Vol.4., Issue.2., 2016
(Mar-Apr)

662 E. BHARAT BABU et al.,

From the above diagram the three costs are

compared i.e, SA, SB. By comparing these three

costs the shortest path is taken into

consideration.SA=1 is the shortest path. The

shortest path of SA is taken into consideration.

The goal is to find the shortest path from S to G. The

ways to travel from S to G is through SABCG. This

shortest path is calculated by comparing each and

every node it visits to the destination node. The

nodes which are calculated or visited are stored in a

closed list and the nodes which are to be visited

are stored in the open list. The values or distances

between the nodes is refreshed every time and

new cost value is entered into the list. The above

graph indicates the shortest path is SABCG=8 .To

find the shortest path from A to G ,the path needs

to travel from SABCG path. Which gives the total

distance as 8.

Flow Chart

The logical decision for the movement of the robot

is shown from the flowchart shown below.

Accordingly the robot moves in the shortest path

possible by following the steps as shown in the

figure below

Simulation

 The simulation result would be of the kind

as shown in the following fiSystem-level testing may

be performed with ISIM or the Model Sim logic

simulator, and such test programs must also be

written in HDL languages. Test bench programs may

include simulated input signal waveforms, or

monitors which observe and verify the outputs of

the device under test.figure shown below

 The distance is calculated in terms of

counts for the movement of the robot. The nodes

are taken as the inputs for simulation purpose.

Conclusion

 This paper deals with finding the shortest

path from a given source to destination using a*

algorithm. This a* algorithm is implemented using

heuristic approach. This heuristic approach deals

with the cost function where the distance between

the nodes is taken as costs. This a* code is

implemented on Xilinx ISE and result is simulated.

This A* gives the minimum time to find the shortest

path.The future work of this project intends to

implement this Verilog code to implement on FPGA

board. Straightforward extensions to our algorithm

include improving the execution time of the space

carving portion of the algorithm and demonstrating

parallelization of the whole algorithm. In addition,

more aggressive space carving may be possible by

making inferences about sensor lines of sight that

return no range data. In the future, we hope to

apply our methods to other scanning technologies

International Journal of Engineering Research-Online

A Peer Reviewed International Journal
Email:editorijoer@gmail.com http://www.ijoer.in

Vol.4., Issue.2., 2016
(Mar-Apr)

663 E. BHARAT BABU et al.,

and to large scale objects such as terrain and

architectural scenes

References

[1]. Delling, D.; Sanders, P.; Schultes, D.;

Wagner, D. (2009). "Engineering route

planning algorithms". Algorithmic of Large

and Complex Networks: Design, Analysis,

and Simulation. Springer. pp. 117–139.

doi:10.1007/978-3-642-02094-0_7.

[2]. Zeng, W.; Church, R. L. (2009). "Finding

shortest paths on real road networks: the

case for A*". International Journal of

Geographical Information Science 23 (4):

531–

543.doi:10.1080/13658810801949850.

[3]. Hart, P. E.; Nilsson, N. J.; Raphael, B. (1968).

"A Formal Basis for the Heuristic

Determination of Minimum Cost Paths".

IEEE Transactions on Systems Science and

Cybernetics SSC4 4 (2): 100–107.

doi:10.1109/TSSC.1968.300136.

[4]. De Smith, Michael John; Goodchild, Michael

F.; Longley, Paul (2007), Geospatial

Analysis: A Comprehensive Guide to

Principles, Techniques and Software Tools,

Troubador Publishing Ltd, p. 344, ISBN

9781905886609.

[5]. Hetland, Magnus Lie (2010), Python

Algorithms: Mastering Basic Algorithms in

the Python Language, Apress, p. 214, ISBN

9781430232377.

[6]. Dechter, Rina; Judea Pearl (1985).

"Generalized best-first search strategies

and the optimality of A*". Journal of the

ACM 32 (3): 505–536.

doi:10.1145/3828.3830.

[7]. Koenig, Sven; Maxim Likhachev; Yaxin Liu;

David Furcy (2004). "Incremental heuristic

search in AI". AI Magazine 25 (2): 99–112.

[8]. Pohl, Ira (1970). "First results on the effect

of error in heuristic search". Machine

Intelligence 5: 219–236.

[9]. Pearl, Judea (1984). Heuristics: Intelligent

Search Strategies for Computer Problem

Solving. Addison-Wesley. ISBN 0-201-

05594-5.

