

International Journal of Engineering Research-Online

A Peer Reviewed International Journal
Email:editorijoer@gmail.com http://www.ijoer.in

Vol.4., Issue.2., 2016
(Mar-Apr)

358 SHENBAGA DEVI R, KRISHNA MOORTHY M

I. INTRODUCTION

 Many software companies spend most of

the money in fixing the bugs. Large software

projects have bug repository that collects all the

information related to bugs. In bug repository, each

software bug has a bug report. The bug report

consists of textual information regarding the bug

and updates related to status of bug fixing. Once a

bug report is formed, a human triager assigns this

bug to a developer, who will try to fix this bug. This

developer is recorded in an item assigned-to. The

assigned to will change to another developer if the

previously assigned developer cannot fix this bug.

 The process of assigning a correct

developer for fixing the bug is called bug triage. Bug

triage is one of the most time consuming step in

handling of bugs in software projects. Manual bug

triage by a human triager is time consuming and

error-prone since the number of daily bugs is large

and lack of knowledge in developers about all bugs.

Because of all these things, bug triage results in

expensive time loss, high cost and low accuracy.

RESEARCH ARTICLE ISSN: 2321-7758

BUG TRIAGE WITH SOFTWARE DATA REDUCTION TECHNIQUES

SHENBAGA DEVI R¹, KRISHNA MOORTHY M²

1Department of MCA, Panimalar Engineering College, Chennai
2Professor, Department of MCA, Panimalar Engineering College, Chennai

ABSTRACT

Software companies spend over 45 percent of cost in dealing with software

bugs. An inevitable step of fixing bugs is bug triage, which aims to correctly

assign a developer to a new bug. To decrease the time cost in manual work,

text classification techniques are applied to conduct automatic bug triage. The

address of problem in data reduction for bug triage, i.e., how to reduce the

scale and improve the quality of bug data. Combine instance selection with

feature selection to simultaneously reduce data scale on the bug dimension and

the word dimension. To determine the order of applying instance selection and

feature selection, we extract attributes from historical bug data sets and build a

predictive model for a new bug data set. We empirically investigate the

performance of data reduction on totally 600,000 bug reports of two large open

source projects, namely Eclipse and Mozilla. The results show that our data

reduction can effectively reduce the data scale and improve the accuracy of bug

triage. Our work provides an approach to leveraging techniques on data

processing to form reduced and high-quality bug data in software development

and maintenance.

Keywords— Bug triage, Bug data reduction, Data management in bug

repositories, Data preprocessing, Feature selection, Instance selection.
©KY Publications

International Journal of Engineering Research-Online

A Peer Reviewed International Journal
Email:editorijoer@gmail.com http://www.ijoer.in

Vol.4., Issue.2., 2016
(Mar-Apr)

359 SHENBAGA DEVI R, KRISHNA MOORTHY M

The information stored in bug reports has two main

challenges. Firstly the large scale data and secondly

low quality of data. Due to large number of daily

reported bugs, the number of bug reports is scaling

up in the repository. Noisy and redundant bugs are

degrading the quality of bug reports. In this paper an

effective bug triage system is proposed which will

reduce the bug data to save the labor cost of

developers. It also aims to build a high quality set of

bug data by removing the redundant and non-

informative bug reports.

II. EXISTING SYSTEM

A.EXISTING CONCEPT

 Modeling Bug Data to investigate the

relationships in bug data, form a bug report network

to examine the dependency among bug reports. This

developer social network is helpful to understand

the developer community and the project evolution.

By mapping bug priorities to developers, identify the

developer prioritization in open source bug

repositories. The developer prioritization can

distinguish developers and assist tasks in software

maintenance. Bug triage aims to assign an

appropriate developer to fix a new bug .

 The problem of automatic bug triage is to

reduce the cost of manual bug triage.

 They apply text classification techniques to

predict related developers. Examine multiple

techniques on bug triage, including data preparation

and typical classifiers.

B.DRAWBACKS

 low quality bug report in bug triage.

 noise and redundancy

III. PROPOSED SYSTEM

A.PROPOSED CONCEPT

 This main aim is to simultaneously reduce

the scales of the bug dimension and the word

dimension and to improve the accuracy of bug

triage.

 We build a binary classifier to predict the

order of applying instance selection and feature

selection.

 Data reduction for bug triage aims to build

a small-scale and high-quality set of bug data by

removing bug reports and words, which are

redundant or non-informative.

The extension, we add new attributes extracted

from bug data sets, prediction for reduction orders,

and experiments on four instance selection

algorithms, four feature selection algorithms, and

their combinations.

We evaluate the reduced bug data according to two

criteria: the scale of a data set and the accuracy of

bug triage.

B.ADVANTAGES

 To reduce the scale of bug dimension and word

dimension.

 To improve the accuracy of bug triage.

 It reduces the time cost in manual work.

IV. SYSTEM ARCHITECTURE

Fig.1

V. MODULE DESCRIPTION

A. DATA REDUCTION

 Data reduction is the transformation of

numerical or alphabetical digital information derived

empirically or experimentally into a corrected,

ordered, and simplified form. When the data are

already in digital form the 'reduction' of the data

typically involves some editing, scaling, coding,

sorting, collating, and producing tabular summaries.

When the observations are discrete but the

underlying phenomenon is continuous then

International Journal of Engineering Research-Online

A Peer Reviewed International Journal
Email:editorijoer@gmail.com http://www.ijoer.in

Vol.4., Issue.2., 2016
(Mar-Apr)

360 SHENBAGA DEVI R, KRISHNA MOORTHY M

smoothing and interpolation are often needed.

Often the data reduction is undertaken in the

presence of reading or measurement errors.

B. DATA REDUCTION FOR BUG TRIAGE

 We propose bug data reduction to reduce

the scale and to improve the quality of data in bug

repositories. We combine existing techniques of

instance selection and feature selection to remove

certain bug reports and words.

 A problem for reducing the bug data is to

determine the order of applying instance selection

and feature selection, which is denoted as the

prediction of reduction orders.

C. APPLYING INSTANCE SELECTION AND

FEATURE SELECTION ALGORITHM

 The combination of instance selection and

feature selection to generate a reduced bug data

set. We replace the original data set with the

reduced data set for bug triage.

 Instance selection and feature selection

are widely used techniques in data processing. For a

given data set in a certain application, instance

selection is to obtain a subset of relevant instances

while feature selection aims to obtain a subset of

relevant features.

D. REDUCTION ORDER

 To avoid the time cost of manually checking

both reduction orders, we consider predicting the

reduction order for a new bug data set based on

historical data sets. We convert the problem of

prediction for reduction orders into a binary

classification problem.

 A bug data set is mapped to an instance

and the associated reduction order is mapped to the

label of a class of instances.

 Note that a classifier can be trained only

once when facing many new bug data sets. That is,

training such a classifier once can predict the

reduction orders for all the new data sets without

checking both reduction orders.

VI. OTHER RELATED WORK

A. Modeling Bug Data

 To investigate the relationships in bug data,

Sandusky et al. Form a bug report network to

examine the dependency among bug reports.

Besides studying relationships among bug reports,

Hong et al.Build a developer social net-work to

examine the collaboration among developers based

on the bug data in Mozilla project. This developer

social net-work is helpful to understand the

developer community and the project evolution. By

mapping bug priorities to developers, Xuan et al.

identify the developer prioritization in open source

bug repositories. The developer prioritization can

distinguish developers and assist tasks in software

maintenance.

 To investigate the quality of bug data,

Zimmermann et al. design questionnaires to

developers and users in three open source projects.

Based on the analysis of questionnaires, they

characterize what makes a good bug report and

train a classifier to identify whether the quality of a

bug report should be improved. Duplicate bug

reports weaken the quality of bug data by delaying

the cost of handling bugs. To detect duplicate bug

reports, Wang et al. design a natural language

processing approach by matching the execution

information; Sun et al. propose a duplicate bug

detection approach by optimizing a retrieval

function on multiple features.

 To improve the quality of bug reports, Breu

et al. [9] have manually analyzed 600 bug reports in

open source projects to seek for ignored

information in bug data. Based on the comparative

analysis on the quality between bugs and

requirements, Xuan et al. transfer bug data to

requirements databases to supplement the lack of

open data in requirements engineering.

 In this paper, we also focus on the quality

of bug data. In contrast to existing work on studying

the characteristics of data quality (e.g., [9],) or

focusing on duplicate bug reports, our work can be

utilized as a preprocessing technique for bug triage,

which both improves data quality and reduces data

scale.

B. Bug Triage

 Bug triage aims to assign an appropriate

developer to fix a new bug, i.e., to determine who

should fix a bug. Cubranic and Murphy [12] first

propose the problem of automatic bug triage to

reduce the cost of manual bug triage. They apply

text classification techniques to predict related

International Journal of Engineering Research-Online

A Peer Reviewed International Journal
Email:editorijoer@gmail.com http://www.ijoer.in

Vol.4., Issue.2., 2016
(Mar-Apr)

361 SHENBAGA DEVI R, KRISHNA MOORTHY M

developers. Anvik et al. [1] examine multiple

techniques on bug triage, including data preparation

and typical classifiers. Anvik and Murphy [3] extend

above work to reduce the effort of bug tri-age by

creating development-oriented recommenders.

 Jeong et al. find out that over 37 percent of

bug reports have been reassigned in manual bug

triage. They propose a tossing graph method to

reduce reassignment in bug triage. To avoid low-

quality bug reports in bug triage, Xuan et al. train a

semi-supervised classifier by combining unlabeled

bug reports with labeled ones. Park et al. convert

bug triage into an optimization problem and pro-

pose a collaborative filtering approach to reducing

the bug-fixing time.

 For bug data, several other tasks exist once

bugs are triaged. For example, severity identification

aims to detect the importance of bug reports for

further scheduling in bug handling; time prediction

of bugs models the time cost of bug fixing and

predicts the time cost of given bug reports;

reopened-bug analysis, identifies the incorrectly

fixed bug reports to avoid delaying the software

release.

 In data mining, the problem of bug triage

relates to the problems of expert finding (e.g., [6])

and ticket routing. In contrast to the broad domains

in expert finding or ticket routing, bug triage only

focuses on assign developers for bug reports.

Moreover, bug reports in bug triage are transferred

into documents (not keywords in expert finding)

and bug triage is a kind of content-based

classification (not sequence-based in ticket routing).

C. Data Quality in Defect Prediction

 In our work, we address the problem of

data reduction for bug triage. To our knowledge, no

existing work has investigated the bug data sets for

bug triage. In a related problem, defect prediction,

some work has focused on the data quality of

software defects. In contrast to multiple-class

classification in bug triage, defect prediction is a

binary-class classification problem, which aims to

predict whether a software artifact (e.g., a source

code file, a class, or a module) contains faults

according to the extracted features of the artifact.

 In software engineering, defect prediction

is a kind of work on software metrics. To improve

the data quality, Khoshgoftaar et al. and Gao et al.

[21] examine the techniques on feature selection to

handle imbalanced defect data. Shivaji et al.

proposes a framework to examine multiple feature

selection algorithms and remove noise features in

classification-based defect pre-diction. Besides

feature selection in defect prediction, Kim et al.

present how to measure the noise resistance in

defect prediction and how to detect noise data.

Moreover, Bishnu and Bhattacherjee [7] process the

defect data with quad tree based k-means clustering

to assist defect prediction.

 In this paper, in contrast to the above work,

we address the problem of data reduction for bug

triage. Our work can be viewed as an extension of

software metrics. In our work, we predict a value for

a set of software artifacts while existing work in

software metrics predict a value for an individual

software artifact.

VII. EXPERIMENTS AND RESULTS

A. Data Preparation

 In this part, we present the data

preparation for applying the bug data reduction. We

evaluate the bug data reduction on bug repositories

of two large open source projects, namely Eclipse

and Mozilla.

 Eclipse [13] is a multi-language software

development environment, including an Integrated

Development Environment (IDE) and an extensible

plug-in system; Mozilla is an Internet application

suite, including some classic products, such as the

Firefox browser and the Thunderbird email client.

Up to December 31, 2011, 366,443 bug reports over

10 years have been recorded to Eclipse while

643,615 bug reports over 12 years have been

recorded to Mozilla.

 In our work, we collect continuous 300,000

bug reports for each project of Eclipse and Mozilla,

i.e., bugs 1-300000 in Eclipse and bugs 300001-

600000 in Mozilla.

 Actually, 298,785 bug reports in Eclipse and

281,180 bug reports in Mozilla are collected since

some of bug reports are removed from bug

repositories (e.g., bug 5315 in Eclipse) or not

allowed anonymous access (e.g., bug 40020 in

International Journal of Engineering Research-Online

A Peer Reviewed International Journal
Email:editorijoer@gmail.com http://www.ijoer.in

Vol.4., Issue.2., 2016
(Mar-Apr)

362 SHENBAGA DEVI R, KRISHNA MOORTHY M

Mozilla). For each bug report, we download web-

pages from bug repositories and extract the details

of bug reports for experiments.

 Since bug triage aims to predict the

developers who can fix the bugs, we follow the

existing work [1],to remove unfixed bug reports,

e.g., the new bug reports or will-not-fix bug reports.

Thus, we only choose bug reports, which are fixed

and duplicate (based on the items status of bug

reports). Moreover, in bug repositories, several

developers have only fixed very few bugs. Such

inactive developers may not provide sufficient

information for predicting correct developers.

 In our work, we remove the developers,

who have fixed less than 10 bugs.

TABLE:1

 To conduct text classification, we extract

the summary and the description of each bug report

to denote the con-tent of the bug. For a newly

reported bug, the summary and the description are

the most representative items, which are also used

in manual bug triage [1]. As the input of classifiers,

the summary and the description are converted into

the vector space model [4]. We employ two steps to

form the word vector space, namely tokenization

and stop word removal. First, we tokenize the

summary and the description of bug reports into

word vectors. Each word in a bug report is

associated with its word frequency, i.e., the times

that this word appears in the bug. Non-alphabetic

words are removed to avoid the noisy words, e.g.,

memory address like 0x0902f00 in bug 200220 of

Eclipse. Second, we remove the stop words, which

are in high frequency and provide no helpful

information for bug triage, e.g., the word “the” or

“about”. The list of stop words in our work is

according to SMART information retrieval system.

We do not use the stemming technique in our work

since existing work [1], [12] has examined that the

stemming technique is not helpful to bug triage.

Hence, the bug reports are converted into vector

space model for further experiments.

VIII. CONCLUSION AND FUTURE WORK

 Bug triage is an expensive step of software

maintenance in both labor cost and time cost. In this

paper, we combine feature selection with instance

selection to reduce the scale of bug data sets as well

as improve the data quality. To deter-mine the order

of applying instance selection and feature selection

for a new bug data set, we extract attributes of each

bug data set and train a predictive model based on

historical data sets. We empirically investigate the

data reduction for bug triage in bug repositories of

two large open source projects, namely Eclipse and

Mozilla. Our work provides an approach to

leveraging techniques on data processing to form

reduced and high-quality bug data in software

development and maintenance.

 In future work, we plan on improving the

results of data reduction in bug triage to explore

how to prepare a high-quality bug data set and

tackle a domain-specific software task. For

predicting reduction orders, we plan to pay efforts

to find out the potential relationship between the

attributes of bug data sets and the reduction orders.

IX. REFERENCES

[1]. Jifeng Xuan, He Jiang, Yan Hu, Zhilei Ren,

Weiqin Zou, Zhongxuan Luo, and Xindong

Wu, “Towards Effective Bug Triage with

Software Data Reduction Techniques”, IEEE

transactions on knowledge and data

engineering, vol. 27, no. 1, january 2015

[2]. D. Cubrani and G. C. Murphy, “Automatic

bug triage using text categorization,” in

Proc. 16th Int. Conf. Softw. Eng. Know l.

Eng., Jun. 2004, pp. 92–97.

[3]. J. Anvik, L. Hiew, and G. C. Murphy, “Who

should fix this bug?” in Proc. 28th Int. Conf.

Softw. Eng., May 2006, pp. 361–370.

[4]. J. Xuan, H. Jiang, Z. Ren, J. Yan, and Z. Luo,

“Automatic bug triage using semi-

supervised text classification,” in Proc. 22nd

Int. Conf. Softw. Eng. Knowl. Eng., Jul. 2010,

pp. 209–214.

International Journal of Engineering Research-Online

A Peer Reviewed International Journal
Email:editorijoer@gmail.com http://www.ijoer.in

Vol.4., Issue.2., 2016
(Mar-Apr)

363 SHENBAGA DEVI R, KRISHNA MOORTHY M

[5]. K. Nigam, A. K. McCallum, S. Thrun, and T.

Mitchell, “Text classification from labeled

and unlabeled documents using EM,”

Machine Learning. Hingham, MA, vol. 39,

pp. 103-134, May 2000.

[6]. M. Alenezi, K. Magel, S. Banitaan “Efficient

Bug Triaging Using Text Mining” Academy

Publisher, 2013.

[7]. W. Zou, Y. Hu, J. Xuan, and H. Jiang,

“Towards training set reduction for bug

triage,” in Proc. IEEE 35th Annual Computer

Software and Applications Conference,

Washington, DC, USA: IEEE Computer

Society, 2011, pp. 576–581.

[8]. A. Tamrawi, T. Nguyen, J. Al-Kofahi, and T.

Nguyen, “Fuzzy set and cache-based

approach for bug triaging,” in Proc. 19th

ACM SIGSOFT Symposium and the 13th

European Conference on Foundations of

Software Engineering, 2011, pp. 365–375.

[9]. G. Jeong, S. Kim, and T. Zimmermann,

“Improving bug triage with tossing graphs,”

in Proc. Joint Meeting 12th Eur. Softw. Eng.

Conf. 17th ACM SIGSOFT Symp. Found.

Softw. Eng., Aug. 2009, pp. 111–120.

[10]. Q. Shao, Y. Chen, S. Tao, X. Yan, and N.

Anerousis, “Efficient ticket routing by

resolution sequence mining,” in Proc. 14th

ACM SIGKDD Int. Conf. Knowl. Discovery

Data Mining, Aug. 2008, pp. 605–613.

[11]. M. D’Ambros, M. Lanza, and M. Pinzger. "A

Bug’s Life" Visualizing a Bug Database. In

Proceedings of IEEE International Workshop

on Visualizing Software for Understanding

and Analysis (VisSoft 2007), pages 113–120,

Banff, Alberta, Canada, 2007. IEEE

Computer Society.

[12]. C. A. Halverson, J. B. Ellis, C. Danis, and W.

A. Kellogg. “Designing task visualizations to

support the coordination of work in

software development.” In CSCW ’06:

Proceedings of the 2006 20th Anniversary

Conference on Computer Supported

Cooperative Work, pages 39–48, 2006.

[13]. P. Bhattacharya P. and Neamtiu I.: Fine-

grained incremental learning and multi-

feature tossing graphs to improve bug

triaging, in Proc. of ICSM’10, pp.1-10

(2010).

[14]. P. Bhattacharya, L. Neamtiu, C. R. Shelton

“Automated, highly-accurate, bug

assignment using machine learning and

tossing graphs” , 2012.

[15]. V.Akila, Dr.G.Zayaraz, Dr.V.Govindasamy

“Effective Bug Triage – A Framework”,

International Conference on Intelligent

Computing, Communication &

Convergence, 114 – 120, 2015

[16]. John Karsten Anvik “Assisting Bug Report

Triage through Recommendation” The

university of British columbia November,

2007

[17]. D. Matter, A. Kuhn, and O. Nierstrasz,

“Assigning bug reports using a vocabulary-

based expertise model of developers,” in

Proc. 6th Int. Working Conf. Mining Softw.

Repositories, May 2009, pp. 131–140

[18]. O. B. Michael and G. C. Robin, "A Bug You

Like: A Framework for Automated

Assignment of Bugs.," IEEE 17th

international conference, 2009.

[19]. L. Chen and P. Pu. “Survey of preference

elicitation methods.” Technical report,

Swiss Federal Institute of Technology in

Lausanne (EPFL), 2004.

[20]. J. W. Park, M. W. Lee, J. Kim, S. W. Hwang,

and S. Kim, “Costriage: A cost-aware triage

algorithm for bug reporting systems,” in

Proc. 25th Conf. Artif. Intell., Aug. 2011, pp.

139–144

[21]. A. Tamrawi, T. Nguyen, J. Al-Kofahi, and T.

Nguyen, “Fuzzy sat based automatic bug

triaging” 2011

[22]. T. Zhang, G. Yang, B. Lee, I. Shin “Role

Analysis-based Automatic Bug Triage

Algorithm”, 2012

[23]. http://ieeeprojects.agplivenews.com/2015-

2016-cse-be-btech-in-chennai/java-data-

mining/ajjdm1512-towards-effective-bug-

triage-with-software/

