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1. INTRODUCTION 

 Data compression implies sending or 

storing a smaller number of bits. Data compression 

is a process that reduces the amount of data in 

order to reduce data transmitted and decreases 

transfer time because the size of the data is reduced 

[1]. Data compression is commonly used in modern 

database systems. Compression can be utilized for 

different reasons including:1) Reducing 

storage/archival costs, which is particularly 

important for large data warehouses.2) Improving 

query workload performance by reducing the I/O 

costs[2]. In database systems, the disk I/O is one of 

the important factor. Any Data Compression 

technique in database is for reducing memory space. 

Compression is best approach to improve the 

system performance [3]. Compression has been 

around nearly as long as there has been research in 

database and has been much worked in this field. 

[4][5][6].Data compression involves transforming a 
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ABSTRACT 

Now a day’s communication plays a vital role and it is the main aspect in the present 

world. Due to this rapid changes are occurred and to transmit the data effectively 

and efficiently it takes large time and power consumption to transmit it. However 

recent technological breakthrough in high speed processing units and 

communication devices has enabled the development of high data compression 

schemes. This paper presents a modified scheme for second generation Run length 

encoding (RLE). Second Generation Run length encoding algorithm performs 

compression of input data based on sequences of identical values. But 2nd 

Generation RLE is having some limitations and they have been highlighted and 

discussed in detail in this paper. In 2nd Generation RLE largest number of sequences 

may increase the number of bits to represents the length of each run, which may 

increase the size of memory stack which may results in performance degradation. For 

2n-bit run it requires 22n memory stack. If run length is greater than 2n bits we 

require 22n+1 memory stack to store the run value. An efficient coding technique, Bit 

stuffing has been suggested in this paper. A new bit different from the original 

sequence is added in between reduces the repeat length, thereby with the same 

stack we can represent length as well. This technique is described using VHDL and is 

implemented on Saprtan3 FPGA. 
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string of characters in some representation (such as 

ASCII) into a new string which contains the same 

information but with smallest possible length [3]. 

Data compression has important application in the 

areas of data transmission and data storage. 

Compressing data reduces storage and 

communication costs. Similarly, compressing a file to 

half of its original size is equivalent to doubling the 

capacity of the storage medium. Data compression 

is rapidly becoming a standard component of 

communications hardware and data storage devices. 

Data compression implies sending or storing a 

smaller number of bits. Although many methods are 

used for this purpose, in general these methods can 

be divided into two broad categories: lossless and 

lossy methods. 

 In lossless data compression, the integrity 

of the data is preserved. The original data and the 

data after compression and decompression are 

exactly the same because, in these methods, the 

compression and decompression algorithms are 

exact inverses of each other: no part of the data is 

lost in the process. Redundant data is removed in 

compression and added during decompression. 

Lossless compression methods are normally used 

when we cannot afford to lose any data. Our eyes 

and ears cannot distinguish subtle changes. In such 

cases, we can use a lossy data compression method. 

These methods are cheaper they take less time and 

space when it comes to sending millions of bits per 

second for images and video. Several methods have 

been developed using lossy compression 

techniques. JPEG (Joint Photographic Experts Group) 

encoding is used to compress pictures and graphics, 

MPEG (Moving Picture Experts Group) encoding is 

used to compress video, and MP3 (MPEG audio 

layer 3) for audio compression. 

2. Run Length Encoding 

 Run-length encoding (RLE) is probably very 

simplest form of data compression in which runs of 

data (that is, sequences in which the same data 

value occurs in many consecutive data elements) are 

stored as a single data value and count, rather than 

as the original run[3][4]. This is most useful on data 

that contains many such runs: for example, simple 

graphic images such as icons, line drawings, and 

animations. It is not useful with files that don't have 

many runs as it could greatly increase the file size. It 

can be used to compress data made of any 

combination of symbols [6]. It does not need to 

know the frequency of occurrence of symbols and 

can be very efficient if data is represented as 0s and 

1s.The general idea behind this method is to replace 

consecutive repeating occurrences of a symbol by 

one occurrence of the symbol followed by the 

number of occurrences. 

 The method can be even more efficient if 

the data uses only two symbols (for example 0 and 

1) in its bit pattern and one symbol is more frequent 

than the other RLE may also be used to refer to an 

early graphics file format supported by CompuServe 

for compressing black and white images, but was 

widely supplanted by their later Graphics 

Interchange Format. RLE also refers to a little-used 

image format in Windows 3.x, with the extension 

rle, which is a Run Length Encoded Bitmap, used to 

compress the Windows 3.x startup screen. Typical 

applications of this encoding are when the source 

information comprises long substrings of the same 

character or binary digit [7]. 

 The RLE algorithm performs a lossless 

compression of input data based on sequences of 

identical values (runs). It is a historical technique, 

originally exploited by fax machine and later 

adopted in image processing. The algorithm is quite 

easy: each run, instead of being represented 

explicitly, is translated by the encoding algorithm in 

a pair (l,v) where l is the length of the run and v is 

the value of the run elements[3]. The longer the run 

in the Sequence to be compressed, the better is the 

compression ratio [3][7]. Run-length encoding (RLE) 

packs consecutive same values into a (value, length) 

pair to compress the data. For example, sequence 

‘52, 52, 52, 4, 4’ will be encoded into ‘(52, 3), (4, 2)’. 

When there exists many runs of the same values, 

RLE can lead to a very high compression ratio. At the 

same time, RLE is very light-weighted in terms of 

both the compression and decompression 

performance [4][8-12]. 
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3. Second generation 2n pattern Run Length 

Encoding Scheme: Our compression method, 2n -

PRL, relies on encoding compatible patterns within 

the test data. Two patterns of the same length are 

compatible (inversely compatible) if every bit pair at 

the same position has the same (opposite) value 

after properly filling the values of don’t-cares. 2n -

PRL first partitions test data into fixed-length (L-bit) 

segments where L has a power of 2. Compression is 

then conducted on 2|n| compatible patterns where 

n is a signed integer. Depending on whether 

encoding is performed within a segment or across 

several adjacent segments, test data can be 

encoded in either of the following two ways: 

internal 2n -PRL (n<0) and external 2n PRL (n≥0), 

characterized by the sign of the exponent n. Internal 

2n -PRL compresses 2|n| runs of compatible 

(inversely compatible) sub segments inside a single 

segment. For example, consider a 12-bit segment 

“100011011011.” If it is divided into four sub 

segments, each of which has a length of 12 × 2−2 = 3 

bits, the last three sub segments are found inversely 

compatible with the first sub segment “100.” Hence 

,the segment can be encoded by −2−2-PRL, where 

the negative sign before the radix represents that 

the sub  segments following the first one are 

inversely compatible with the first one and the 

exponent value −2 represents that this segment is 

divided into 1/2−2 = 4 sub segments. A codeword 

used for internal 2n -PRL has three components as 

shown in Fig. 1(a), where sign (S) is the sign before 

the radix (“1” for negative and “0” for positive), 

exponent (E) is the K-bit exponent field value 

(including the sign of the exponent), and pattern (P) 

is the first sub segment data whose don’t-cares are 

properly filled to enable compatibility with the 

subsequent sub segments. A negative sign bit before 

the radix represents inversely compatible. As an 

example, the above 12-bit segment can be encoded 

into codeword 1110 100 as shown in Fig. 1(b). 

External 2n -PRL compresses 2n consecutive 

compatible segments into a short one [13-16]. 

  

 
Fig. 1. (a) Codeword format for internal 2

n
 -PRL. 

(b) Encoding example. 

 
Fig. 2. (a) Codeword format for external 2

n
-PRL.      

(b) Encoding example. 

Table 1. Simple Encoding Table For L = 8. 

 

 
Fig.3. Flowchart of modified RLE compressor 

Compression algorithm can be explained as follows: 

1) First initialize the length, temp and count values. 

2) Length denote length  of data sequence, temp 

denote temporary register which holds the 

present data value of the length, count indicates 

the count of 0’s and 1’s indicated by i and j, but 

initially count =0. 

3) Initialize i=2^L-1, AND j= 2^L-1, where i is used to 



 

International Journal of Engineering Research-Online  

A Peer Reviewed International Journal   
Articles available online http://www.ijoer.in 

Vol.3., Issue.6., 2015 
(Nov.-Dec.,) 

 

345 M .D. SATYA PRIYA et al., 

 

count no of 0’s and j for no of 1’s. 

4) If L=TEMP, then compression stops, since data is 

not available. 

5) If step 4 is false , then check whether i =0 or not.  

6) In this step if i=0 then count is incremented 

i.e.,count = count +1, temporary register is 

incremted for next data value, FIFO register flag is 

also updated to hold the count for i. 

7) If i=0 is false, then it cheks for j=1,if it is true then 

count is incremented i.e.,count = count +1, 

temporary register is incremted for next data 

value, FIFO register flag is also updated to hold 

the count for j. 

8) The steps 6 and 7 repeat until length= tem, if 

equal then compression stops and FIFO  register 

holds the run length count of  i and j values. 

9) Print last data.  

4. Decompression architecture for 2
n
 PRL 

 Fig. 4 shows the general architecture of our 

decompression method. Conceptually, the 

decompression architecture of 2
n
 PRL comprises a 

finite-state machine (FSM) and a control and 

generator unit (CGU). The FSM is responsible for 

codeword identification. The CGU is responsible for 

controlling data transmission between the ATE and 

the FSM, generating test patterns, and controlling 

the scan chain of the CUT. Fig. 4 presents the 

decompressor for 2
n
 -PRL with 8-bit segments (L = 8) 

and a 2-bit exponent (K = 2). The decompressor is 

delineated as follows. 

1) Decoder: It identifies code words and generates 

control signals such as Inverse, Load, and Shift. 

Inverse decides whether the buffer content should 

be inverted due to decompressing inversely 

compatible segments. Load enables loading a 

decoded test pattern from the multiplexer array into 

the buffer when a segment is encoded by internal 2
n
 

-PRL or an exception type. Shift enables sending test 

data in the buffer into the scan chain. 

2) Multiplexer Array: It employs an array of 

multiplexers to produce test patterns. The number 

of multiplexers equals 

L − L/2K−1. There are four multiplexers for K = 2 and 

L = 8. These multiplexers are connected to the 

decoder and buffer in a manner shown in Fig.5.  

3) Buffer: It stores the decompressed test data and 

sends them to the scan chain.  

 
Fig.4. General decompression architecture of 2

n
 -

PRL. 

 
Fig.5. Decompressor for 2

n
 -PRL with L = 8 and  K = 2 

5. Simulation Results 

 HDL design has the ability to simulate HDL 

programs. Simulation allows an HDL description of a 

design (called a model) to pass design verification, 

an important milestone that validates the design's 

intended function (specification) against the code 

implementation in the HDL description. It also 

permits architectural exploration. The engineer can 

experiment with design choices by writing multiple 

variations of a base design, then comparing their 

behavior in simulation. Thus, simulation is critical for 

successful HDL design. An HDL simulator — the 

program that executes the testbench — maintains 

the simulator clock, which is the master reference 

for all events in the testbench simulation. Events 

occur only at the instants dictated by the testbench 

HDL (such as a reset-toggle coded into the 

testbench), or in reaction (by the model) to stimulus 

and triggering events. Modern HDL simulators have 

full-featured graphical user interfaces, complete 

with a suite of debug tools. These allow the user to 

stop and restart the simulation at any time, insert 

simulator breakpoints (independent of the HDL 

code), and monitor or modify any element in the 

HDL model hierarchy 
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Fig.6. Compressed output 

 
Fig.7. Decompressed output 

Table 2.Compression Ratios Obtained by Our 

Method and Previous Works. 

 
6. Conclusion 

This paper has presented a run-length-

based compression method  called 2
n
 -PRL. 2

n
 -PRL is 

very effective in compressing 2|n| successively 

compatible (or inversely compatible) patterns either 

inside a segment or across multiple segments. The 

decompressor was small and easy to implement. 

The experimental results showed that 2
n
 -PRL can 

achieve an average compression ratio of up to 

67.64%. 
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