

International Journal of Engineering Research-Online

A Peer Reviewed International Journal
Articles available online http://www.ijoer.in

Vol.3., Issue.6., 2015
(Nov.-Dec.,)

342 M .D. SATYA PRIYA et al.,

1. INTRODUCTION

 Data compression implies sending or

storing a smaller number of bits. Data compression

is a process that reduces the amount of data in

order to reduce data transmitted and decreases

transfer time because the size of the data is reduced

[1]. Data compression is commonly used in modern

database systems. Compression can be utilized for

different reasons including:1) Reducing

storage/archival costs, which is particularly

important for large data warehouses.2) Improving

query workload performance by reducing the I/O

costs[2]. In database systems, the disk I/O is one of

the important factor. Any Data Compression

technique in database is for reducing memory space.

Compression is best approach to improve the

system performance [3]. Compression has been

around nearly as long as there has been research in

database and has been much worked in this field.

[4][5][6].Data compression involves transforming a

RESEARCH ARTICLE ISSN: 2321-7758

ENHANCED SECOND GENERATION 2n PATTERN RUN LENGTH ENCODING (RLE)

SCHEME FOR TEST DATA COMPRESSION

M .D. SATYA PRIYA1, G.S.S.PRASAD2, NGN PRASAD3
1PG Scholar, 2,3Assist Professor,

Kakinada institute of Engineering and Technology, A.P.

ABSTRACT

Now a day’s communication plays a vital role and it is the main aspect in the present

world. Due to this rapid changes are occurred and to transmit the data effectively

and efficiently it takes large time and power consumption to transmit it. However

recent technological breakthrough in high speed processing units and

communication devices has enabled the development of high data compression

schemes. This paper presents a modified scheme for second generation Run length

encoding (RLE). Second Generation Run length encoding algorithm performs

compression of input data based on sequences of identical values. But 2nd

Generation RLE is having some limitations and they have been highlighted and

discussed in detail in this paper. In 2nd Generation RLE largest number of sequences

may increase the number of bits to represents the length of each run, which may

increase the size of memory stack which may results in performance degradation. For

2n-bit run it requires 22n memory stack. If run length is greater than 2n bits we

require 22n+1 memory stack to store the run value. An efficient coding technique, Bit

stuffing has been suggested in this paper. A new bit different from the original

sequence is added in between reduces the repeat length, thereby with the same

stack we can represent length as well. This technique is described using VHDL and is

implemented on Saprtan3 FPGA.

Keywords: Bit stuffing, compression, memory stack, run, and Run length encoding

(RLE). ©KY Publications

International Journal of Engineering Research-Online

A Peer Reviewed International Journal
Articles available online http://www.ijoer.in

Vol.3., Issue.6., 2015
(Nov.-Dec.,)

343 M .D. SATYA PRIYA et al.,

string of characters in some representation (such as

ASCII) into a new string which contains the same

information but with smallest possible length [3].

Data compression has important application in the

areas of data transmission and data storage.

Compressing data reduces storage and

communication costs. Similarly, compressing a file to

half of its original size is equivalent to doubling the

capacity of the storage medium. Data compression

is rapidly becoming a standard component of

communications hardware and data storage devices.

Data compression implies sending or storing a

smaller number of bits. Although many methods are

used for this purpose, in general these methods can

be divided into two broad categories: lossless and

lossy methods.

 In lossless data compression, the integrity

of the data is preserved. The original data and the

data after compression and decompression are

exactly the same because, in these methods, the

compression and decompression algorithms are

exact inverses of each other: no part of the data is

lost in the process. Redundant data is removed in

compression and added during decompression.

Lossless compression methods are normally used

when we cannot afford to lose any data. Our eyes

and ears cannot distinguish subtle changes. In such

cases, we can use a lossy data compression method.

These methods are cheaper they take less time and

space when it comes to sending millions of bits per

second for images and video. Several methods have

been developed using lossy compression

techniques. JPEG (Joint Photographic Experts Group)

encoding is used to compress pictures and graphics,

MPEG (Moving Picture Experts Group) encoding is

used to compress video, and MP3 (MPEG audio

layer 3) for audio compression.

2. Run Length Encoding

 Run-length encoding (RLE) is probably very

simplest form of data compression in which runs of

data (that is, sequences in which the same data

value occurs in many consecutive data elements) are

stored as a single data value and count, rather than

as the original run[3][4]. This is most useful on data

that contains many such runs: for example, simple

graphic images such as icons, line drawings, and

animations. It is not useful with files that don't have

many runs as it could greatly increase the file size. It

can be used to compress data made of any

combination of symbols [6]. It does not need to

know the frequency of occurrence of symbols and

can be very efficient if data is represented as 0s and

1s.The general idea behind this method is to replace

consecutive repeating occurrences of a symbol by

one occurrence of the symbol followed by the

number of occurrences.

 The method can be even more efficient if

the data uses only two symbols (for example 0 and

1) in its bit pattern and one symbol is more frequent

than the other RLE may also be used to refer to an

early graphics file format supported by CompuServe

for compressing black and white images, but was

widely supplanted by their later Graphics

Interchange Format. RLE also refers to a little-used

image format in Windows 3.x, with the extension

rle, which is a Run Length Encoded Bitmap, used to

compress the Windows 3.x startup screen. Typical

applications of this encoding are when the source

information comprises long substrings of the same

character or binary digit [7].

 The RLE algorithm performs a lossless

compression of input data based on sequences of

identical values (runs). It is a historical technique,

originally exploited by fax machine and later

adopted in image processing. The algorithm is quite

easy: each run, instead of being represented

explicitly, is translated by the encoding algorithm in

a pair (l,v) where l is the length of the run and v is

the value of the run elements[3]. The longer the run

in the Sequence to be compressed, the better is the

compression ratio [3][7]. Run-length encoding (RLE)

packs consecutive same values into a (value, length)

pair to compress the data. For example, sequence

‘52, 52, 52, 4, 4’ will be encoded into ‘(52, 3), (4, 2)’.

When there exists many runs of the same values,

RLE can lead to a very high compression ratio. At the

same time, RLE is very light-weighted in terms of

both the compression and decompression

performance [4][8-12].

International Journal of Engineering Research-Online

A Peer Reviewed International Journal
Articles available online http://www.ijoer.in

Vol.3., Issue.6., 2015
(Nov.-Dec.,)

344 M .D. SATYA PRIYA et al.,

3. Second generation 2n pattern Run Length

Encoding Scheme: Our compression method, 2n -

PRL, relies on encoding compatible patterns within

the test data. Two patterns of the same length are

compatible (inversely compatible) if every bit pair at

the same position has the same (opposite) value

after properly filling the values of don’t-cares. 2n -

PRL first partitions test data into fixed-length (L-bit)

segments where L has a power of 2. Compression is

then conducted on 2|n| compatible patterns where

n is a signed integer. Depending on whether

encoding is performed within a segment or across

several adjacent segments, test data can be

encoded in either of the following two ways:

internal 2n -PRL (n<0) and external 2n PRL (n≥0),

characterized by the sign of the exponent n. Internal

2n -PRL compresses 2|n| runs of compatible

(inversely compatible) sub segments inside a single

segment. For example, consider a 12-bit segment

“100011011011.” If it is divided into four sub

segments, each of which has a length of 12 × 2−2 = 3

bits, the last three sub segments are found inversely

compatible with the first sub segment “100.” Hence

,the segment can be encoded by −2−2-PRL, where

the negative sign before the radix represents that

the sub segments following the first one are

inversely compatible with the first one and the

exponent value −2 represents that this segment is

divided into 1/2−2 = 4 sub segments. A codeword

used for internal 2n -PRL has three components as

shown in Fig. 1(a), where sign (S) is the sign before

the radix (“1” for negative and “0” for positive),

exponent (E) is the K-bit exponent field value

(including the sign of the exponent), and pattern (P)

is the first sub segment data whose don’t-cares are

properly filled to enable compatibility with the

subsequent sub segments. A negative sign bit before

the radix represents inversely compatible. As an

example, the above 12-bit segment can be encoded

into codeword 1110 100 as shown in Fig. 1(b).

External 2n -PRL compresses 2n consecutive

compatible segments into a short one [13-16].

Fig. 1. (a) Codeword format for internal 2

n
 -PRL.

(b) Encoding example.

Fig. 2. (a) Codeword format for external 2

n
-PRL.

(b) Encoding example.

Table 1. Simple Encoding Table For L = 8.

Fig.3. Flowchart of modified RLE compressor

Compression algorithm can be explained as follows:

1) First initialize the length, temp and count values.

2) Length denote length of data sequence, temp

denote temporary register which holds the

present data value of the length, count indicates

the count of 0’s and 1’s indicated by i and j, but

initially count =0.

3) Initialize i=2^L-1, AND j= 2^L-1, where i is used to

International Journal of Engineering Research-Online

A Peer Reviewed International Journal
Articles available online http://www.ijoer.in

Vol.3., Issue.6., 2015
(Nov.-Dec.,)

345 M .D. SATYA PRIYA et al.,

count no of 0’s and j for no of 1’s.

4) If L=TEMP, then compression stops, since data is

not available.

5) If step 4 is false , then check whether i =0 or not.

6) In this step if i=0 then count is incremented

i.e.,count = count +1, temporary register is

incremted for next data value, FIFO register flag is

also updated to hold the count for i.

7) If i=0 is false, then it cheks for j=1,if it is true then

count is incremented i.e.,count = count +1,

temporary register is incremted for next data

value, FIFO register flag is also updated to hold

the count for j.

8) The steps 6 and 7 repeat until length= tem, if

equal then compression stops and FIFO register

holds the run length count of i and j values.

9) Print last data.

4. Decompression architecture for 2
n
 PRL

 Fig. 4 shows the general architecture of our

decompression method. Conceptually, the

decompression architecture of 2
n
 PRL comprises a

finite-state machine (FSM) and a control and

generator unit (CGU). The FSM is responsible for

codeword identification. The CGU is responsible for

controlling data transmission between the ATE and

the FSM, generating test patterns, and controlling

the scan chain of the CUT. Fig. 4 presents the

decompressor for 2
n
 -PRL with 8-bit segments (L = 8)

and a 2-bit exponent (K = 2). The decompressor is

delineated as follows.

1) Decoder: It identifies code words and generates

control signals such as Inverse, Load, and Shift.

Inverse decides whether the buffer content should

be inverted due to decompressing inversely

compatible segments. Load enables loading a

decoded test pattern from the multiplexer array into

the buffer when a segment is encoded by internal 2
n

-PRL or an exception type. Shift enables sending test

data in the buffer into the scan chain.

2) Multiplexer Array: It employs an array of

multiplexers to produce test patterns. The number

of multiplexers equals

L − L/2K−1. There are four multiplexers for K = 2 and

L = 8. These multiplexers are connected to the

decoder and buffer in a manner shown in Fig.5.

3) Buffer: It stores the decompressed test data and

sends them to the scan chain.

Fig.4. General decompression architecture of 2

n
 -

PRL.

Fig.5. Decompressor for 2

n
 -PRL with L = 8 and K = 2

5. Simulation Results

 HDL design has the ability to simulate HDL

programs. Simulation allows an HDL description of a

design (called a model) to pass design verification,

an important milestone that validates the design's

intended function (specification) against the code

implementation in the HDL description. It also

permits architectural exploration. The engineer can

experiment with design choices by writing multiple

variations of a base design, then comparing their

behavior in simulation. Thus, simulation is critical for

successful HDL design. An HDL simulator — the

program that executes the testbench — maintains

the simulator clock, which is the master reference

for all events in the testbench simulation. Events

occur only at the instants dictated by the testbench

HDL (such as a reset-toggle coded into the

testbench), or in reaction (by the model) to stimulus

and triggering events. Modern HDL simulators have

full-featured graphical user interfaces, complete

with a suite of debug tools. These allow the user to

stop and restart the simulation at any time, insert

simulator breakpoints (independent of the HDL

code), and monitor or modify any element in the

HDL model hierarchy

International Journal of Engineering Research-Online

A Peer Reviewed International Journal
Articles available online http://www.ijoer.in

Vol.3., Issue.6., 2015
(Nov.-Dec.,)

346 M .D. SATYA PRIYA et al.,

Fig.6. Compressed output

Fig.7. Decompressed output

Table 2.Compression Ratios Obtained by Our

Method and Previous Works.

6. Conclusion

This paper has presented a run-length-

based compression method called 2
n
 -PRL. 2

n
 -PRL is

very effective in compressing 2|n| successively

compatible (or inversely compatible) patterns either

inside a segment or across multiple segments. The

decompressor was small and easy to implement.

The experimental results showed that 2
n
 -PRL can

achieve an average compression ratio of up to

67.64%.

References

[1]. S. Mitra and K. S. Kim, “X-Compact: An

efficient response compaction technique,”

IEEE Trans. Comput.-Aided Des. Integr.

Circuits Syst., vol.23, no. 3, pp. 421–432,

Mar. 2004.

[2]. J. Rajski, J. Tyszer, M. Kassab, and N.

Mukherjee, “Embedded deterministic test,”

IEEE Trans. Comput.-Aided Des. Integr.

Circuits Syst., vol. 23, no. 5, pp. 776–792,

May 2004.

[3]. S. Mitra and K. S. Kim, “XMAX: X-tolerant

architecture for maximal test

compression,” in Proc. IEEE Int. Conf.

Comput. Des., Oct. 2003,pp. 326–330.

[4]. B. Koenemann, C. Banhart, B. Keller, T.

Snethen, O. Farnsworth, and D. Wheater,

“A SmartBIST variant with guaranteed

encoding,” in Proc.Asia Test Symp., 2001,

pp. 325–330.

[5]. N. A. Touba, “Survey of test vector

compression techniques,” IEEE Des. Test

Comput., vol. 23, no. 4, pp. 294–303, Apr.

2006.

[6]. D. A. Huffman, “A method for the

construction of minimum redundancy

codes,” Proc. IRE, vol. 40, no. 9, pp. 1098–

1101, Sep. 1952.

[7]. A. Jas, J. Ghosh-Dastidar, N. Mom-Eng, and

N. A. Touba, “An efficient test vector

compression scheme using selective

Huffman coding,” IEEE Trans. Comput.-

Aided Des. Integr. Circuits Syst., vol. 22, no.

6, pp. 797–806, Jun. 2003.

[8]. X. Kavousianos, E. Kalligeros, and D.

Nikolos, “Optimal selective Huffman coding

for test-data compression,” IEEE Trans.

Comput., vol. 56, no. 8, pp. 1146–1152,

Aug. 2007.

[9]. P. T. Gonciari, B. Al-Hashimi, and N. Nicolici,

“Improving compression ratio, area

overhead, and test application time for

system-on-a-chip test data

compression/decompression,” in Proc. Des.

Automat. Test Eur., Mar. 2002, pp. 604–

611.

[10]. M. Tehranipoor, M. Nourani, and K.

Chakrabarty, “Nine-coded compression

technique for testing embedded cores in

SoCs,” IEEE Trans. Very Large Scale Integr.

Syst., vol. 13, no. 6, pp. 719–731, June.

[11]. Efficient coding schemes for the hardsquare

model,‖ IEEE Trans. Inform. Theory, vol. 47,

pp. 1166–1176, Mar. 2001.

International Journal of Engineering Research-Online

A Peer Reviewed International Journal
Articles available online http://www.ijoer.in

Vol.3., Issue.6., 2015
(Nov.-Dec.,)

347 M .D. SATYA PRIYA et al.,

[12]. B. Ramamurthi and A. Gersho. Classified

Vector Quantization of Images. IEEE

Transactions on Communications, COM-

34:1105–1115, November 1986.

[13].] M. Hans and R.W. Schafer. AudioPak—An

Integer Arithmetic Lossless Audio Code. In

Proceedings of the Data Compression

Conference, DCC ‘98. IEEE, 1998.

[14]. G. Langdon and J.J. Rissanen. Compression

of black-white images with arithmetic

coding. IEEE Transactions on

Communications, 29(6):858–867, 1981.

[15]. J. Ziv and A. Lempel. A universal algorithm

for data compression. IEEE Transactions on

Information Theory, IT-23(3):337–343, May

1977.

[16]. M. Nelson and J.-L. Gailly. The Data

Compression Book. M&T Books, CA, 1996.

