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1 INTRODUCTION 

The rapid growth of data volumes poses a 

challenge in many scientific disciplines. Scientists 

must process data sets gathered by means of large-

scale experiments along with sensors. The Volume of 

data that is generated by all of us right from the start 

of time until finally 2003 ended up being 5 billion 

gigabytes. When you stack up the particular the 

shape of disks it may complete an entire football 

field. The same volume was created in each and 

every a pair of days within 2011, and in each and 

every five minutes within rate is growing extremely. 

Although all of this data created can be meaningful 

and are needed while highly processed, it is 

becoming forgotten. 90% the actual world's 

information was created with in the most recent 

period. 

One among the grand challenges associated 

with data driven science is always to find interesting 

patterns in massive high dimensional data sets that 

may bring out to new hypotheses. This process is 

currently limited by the large amount of required 

human effort and the high computational cost. 

Our goal is to develop novel scalable 

exploratory analysis tools and algorithms in order to 

help scientists search for potentially interesting 

hypotheses with very large, high-dimensional data 

sets. We focus on the join operation which is 

essential for detecting correlations and relationships 

between patterns in scientific data. 

The contributions of this paper are listed in the 

following. 

Given two sets S and T, the join operation 

returns the set of all pairs (s, t) that satisfy some join 

condition  C(s, t), where s ∈  S, t ∈ T, and C is a 

Boolean function over the attributes of S and T.   

A join operation with such a general join 

condition C is called a theta-join. The joint operation 
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is one of the fundamental relational operations and 

frequently used to combine information from 

multiple sources. In order to support arbitrary theta-

join predicates, we define a join model that will 

simplifies generation associated with and thought 

about feasible join algorithms. 

We propose a randomized join algorithm 

called 1-Bucket-Random that achieves near-optimal 

execution time for output-size dominated join 

problems. This algorithm is capable of processing any 

theta-join, Such as the cross-product. This simply 

desires nominal input statistics (cardinality ratio of 

input sets) and still efficiently parallelizes the 

computation. 1-Bucket-Random can be improved by 

exploiting input statistics for selective joins. We 

propose algorithms for a popular class of joins, 

including equality, inequality and also band joins.   

2. RELATED WORK 

N. Dean et al [2] MapReduce possesses 

emerged as one of the most common paradigm 

intended for parallel processing, plus it by now 

features a excellent effect on data management 

research. One main reason behind its achievements 

is the option of to a totally free open-source 

implementation, Hadoop[1], and also  a great 

energetic developer group which keeps producing 

upgrades and also introducing capabilities. 

MapReduce seemed to be offered to make simpler 

large-scale facts finalizing with spread and also 

parallel architectures, in particular clusters regarding 

commodity hardware.  

Foto N. Afrati [3] Implementations 

associated with map reduce are now being helpful to 

execute several operations on very huge data. We 

analyze strategies for joining various associations in 

the map reduce environment. New strategy will 

begin by simply determining the actual map key the 

pair of attributes that determine the Reduce process 

in order to which a Map process should send out a 

unique tuple. Each attribute from the map-key will 

get a share. Then, we look at two essential specific 

cases: chain joins as well as star joins. In each and 

every case we are able to establish the map-key and 

establish the actual shares that deliver the least 

replication. 

F. Afrati et al [5] Join processing for 

example, depends on input replication with in the 

map phase to be able to calculate multi-way joins. 

Provides the most effective of a multi-way join in one 

MapReduce job, which just works for that Equi join 

case. Since Theta join can’t always be answered by 

simply making the particular join attribute the 

partition key, thus, the perfect solution proposed in 

not extended to resolve the situation of multi-way 

Theta-joins. 

3. THETA JOINS 

The Theta-Join ∞𝜃  operator is the most 

generic and can be any function of the participating 

attributes from the two relations. The flexibility that 

this operator gives us, allows for sophisticated 

queries to be implemented. Several commonly used 

instances of this operator exist, such as the Equi-Join, 

where the function is the equality operator (=). 

 Techniques that will enable effective parallel 

execution connected with arbitrary theta-joins inside 

MapReduce. Not any modifications from the 

MapReduce environment are necessary, and also the 

end user doesn’t even have to write any kind special-

purpose code to regulate data flow. Almost 

everything is achieved simply by specifying the 

suitable (sequential) Map and also reduce functions. 

Particularly, we make the following primary 

contributions. 

1. We propose to hear a reducer primarily based cost 

model along with join model that will simplifies 

formation of and reasoning with regards to  possible 

theta-join implementations inside MapReduce. 

2. We propose to hear the randomized algorithm 

known as 1-Bucket- Theta intended for computing 

any kind of theta-join, such as the cross-product, in 

single MapReduce job. This kind of algorithm only 

requires minimal input statistics (cardinality 

associated input sets) but still effectively parallelizes 

any kind of theta-join implementation. We show that 

it must be close to optimal intended for joins having 

large output size. regarding highly selective joins, we 

indicate that will although much better 

implementations inside MapReduce may exist, they 

generally is not used, leaving behind 1-Bucket-Theta 

since the very best available option. 

3. For any common type of non equi joins, which 

includes inequality and also band-joins, we propose 

to here algorithms that will often improve in 1-
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Bucket-Theta, provided that sufficiently detailed 

input statistics are available. 

3.1 COST MODEL FOR MAPREDUCE 

 Since cost intended for transferring data 

from the DFS through the mapper nodes and also the 

cost with regard to reading the input tuples locally on 

each and every mapper is just not impacted by the 

actual concrete Map along with Reduce functions, we 

need not take these kinds of costs into consideration 

for that optimization. Map and Reduce functions 

impact the costs through providing Map function 

output till writing a final join result to the DFS. To 

analyze the particular completion time period of 

those MapReduce job phases, look at a single 

reducer. 

 This reducer receives the particular subset 

with the mapper output tuples as it's input. It sorts 

the actual input by key, flows the matches value-list 

for just a key, computes the join due to this list, then 

writes their locally produces join tuples towards the 

DFS. 

(S,T) 5 7 7 7 8 9  (S,T) 5 7 7 7 8 9  (S,T) 5 7 7 7 8 9 

5       5       5       

7       7       7       

7       7       7       

8       8       8       

9       9       9       

9       9       9       

Table:1 S.A = T.A  Table: 2   abs (S.A = T.A) < 2 Table : 3  S.A >= T.A 

Figure 1: Join matrices with equi join, similarity-join, and also inequality-join.  

Numbers shows join attribute values 

through S and T, shaded cells show join results. M(i,j) 

shows cell numbering. 

 Our cost model is applicable beyond 

MapReduce, to any shared-nothing system. However, 

systems with detailed data fragmentation statistics 

can exploit data locality and reduce input transfer 

cost which is not applicable in MapReduce context. 

For output-size dominated join problems, our cost 

model is applicable beyond MapReduce. 

3.2 JOIN MODEL 

a join in between two data sets S along with 

T that has a join-matrix M as well as use this kind of  

representation regarding creation of and also 

reasoning about different join implementations with 

in MapReduce. Figure 3 indicates example data sets 

as well as the equivalent matrix intend for a various 

range of join predicates. For row i as well since 

column j, matrix access M (i, j) can be defined in 

order to accurate (shaded inside the picture) when 

the I
th

 tuple by S and j
th

 tuple by T satisfy the join 

condition and also false (not filled) usually. Since any 

kind of theta-join is really a subset from the cross-

product, this matrix can easily represent any kind of 

join condition. 

Our objective is usually to have each join 

output tuple always produced by specifically one 

reducer, so that expensive post-processing as well as 

duplicate removing is avoided. Therefore, given r 

reducers we should map every matrix cell along with 

value M (i, j) accurate in order to specifically among 

the r reducers. 

We may also suggest that reducer R insures 

the join matrix cell, just in case this kind of cell will be 

mapped to R. There are various feasible mappings 

that handle all true valued matrix cells. Our objective 

is to discover that mapping from join matrix cells in 

order to reducers that will minimize job completion 

time. For this reason we would like to find mappings 

that will either balance reducer input share or even 

balance reducer output share or even achieve a 

compromise between both . 

Table 4 :-  R1: keys 5,8 Inputs are: S1,S4, T1,T5 and  

Output: 2 tuples 

                  R2: key 7 Inputs are: S2,S3, T2,T3,T4 and  

Output: 6 tuples 

                   R1: key 9 Input are : S5,S6,T6 and Output: 

2 tuples 

max−reducer−input is = 5 

max−reducer−output is = 6 
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(S,T) 5 7 7 7 8 9  (S,T) 5 7 7 7 8 9  (S,T) 5 7 7 7 8 9 

5  5       5  3       5       

7    7     7   2   3   1    7  1    2     

7       7   3   1   2    7       

8      8   8      1   8       

9       9  9       2  9      3   

9       9       1  9       

Table 4      Table 5    Table  6 

Figure 2: Matrix-to-reducer mappings along with standard (left) equi-join algorithm, (center) random and also 

balanced (right) approach

 

Table 5 : R1: key 1 Inputs are: S3,S2,S6,S4,T4,T3,T6,T5 

and Output: 4 tuples 

R2: key 2 Inputs are: S2,S5,S3,T2,T6,T4 and Output: 3 

tuples 

R3: keys 3 Input: S1,S2,S3,T1,T2,T3 and Output is : 3 

tuples 

max−reducer−input is = 8 

max−reducer−output is = 4 

Table 6 :-  R1: key 1 Inputs are: S1,S2,S3,T1,T2 and 

also Output: 3 tuples 

R2: key 2 Inputs are: S2,S3,T3,T4 and also Output: 4 

tuples 

R3: keys 3 Inputs are: S4,S5,S6,T5,T6 and also Output: 

3 tuples 

max−reducer−input is  = 5,  

max−reducer−output is = 4 

the new algorithm denotes the actual practical 

implementations of this type of  simple idea. balance 

input and also output costs although minimizing 

replication of reducer input tuples. We may 

frequently make use the following important lemma. 

4. THE 1-BUCKET-THETA ALGORITHM 

 The actual challenges for implementing joins 

within MapReduce: data skew and also the difficulty 

involving implementing non - equi joins along with 

key-equality based mostly data flow control. We have 

now expose 1-Bucket-Theta, a algorithm of which 

addresses these challenges, and gives robust 

analytical results regarding their properties. 

 

Figure 3: 1-Bucket-Theta Join Matrix Partitioning 

Table 1: 1-Bucket-Theta theorems’symbols 

Symbol Explanation 

|S| sizeofrelationS 

|T| size of relationT 

Q reducer’sinput 

P number ofreducers 

cS how many optimal squares of the  

corre- 

sponding side-length can fit into 

thema-trixhorizontally cT how many optimal squares of the  

corre- 

sponding side-length can fit into 

thema-trixvertically 1-Bucket-Theta inspects almost all tuple 

pairs, and involves only minimal statistical data, 

which is the cardinalities from the input, which 

makes it one of the most tgeneric algorithms. 

The actual point on this algorithm could be 

the fundamental method which it divides the JM, by 

giving 3 theorems (those are listed below) as well as 

certain lemmas to guide them, in a manner that 

almost all cells are covered and simultaneously, the 

most reducer input metric can be minimized. It can 

be suited to higher selectivity joins (e.g. >50%). This  

cross-product includes each and every  tuple  from  S  

along with  every  single tuple  from  T,  the particular 

matching  join  matrix  offers  almost all  entries  set  

to accurate.  We  explain  the way 1-Bucket-Theta  

does  matrix-to-reducer  mapping,  indicate  that  it  

must be near-optimal  for  computing  the  particular 

cross-product,  and  also discuss how most of these 

results extend to processing associated with  theta-

joins.  

These three theorems will be the key points 

of 1-Bucket-Theta and provide us strong ensures with 

the near optimality from the algorithm for 
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implementing this Cross Product case, and can be 

described as: 

•THEOREM 1: If |S| and |T| are multiples 

of |𝑆||𝑇|/𝑝  , the JM can be partitioned into 𝑐𝑠  by 

𝑐𝑇   |𝑆||𝑇|/𝑝   squares of size  |𝑆||𝑇|/𝑝   each. 

•THEOREM 2: If |S| < |T|/p, then the JM can be 

partitioned by a single row of r rectangles of size |S| 

by |T|/p. 

•THEOREM 3: If |T/p| ≤ |S| ≤ |T|   , then a 

partitioning can always be found with the properties: 

not any reducer produces greater than 4|S||T|/p 

output tuples and not any reducer receives greater 

than 4 |𝑆||𝑇|/𝑝    input tuples. 

4.1 IMPLEMENTING THETA-JOINS 

  While we exhibited over that this 

MapReduce implementation will be close to 

optimum for cross-product computation, this kind of 

result will not always carry up to arbitrary joins. This 

segment provides solid evidence that actually 

intended for extremely selective join conditions, it is 

sometimes difficult to help along with a better 

algorithm compared 1-Bucket-Theta. They will just 

cannot be seen as correct implementations using the 

information available at that time when the ideal 

implement-tation will be selected to get a given join 

problem, as we show now.  

 Consider an arbitrary theta-join along with 

selectivity σ, i.e., it produces σ |S||T| are output 

tuples. To reduce max-reducer- output, each reducer 

need to be responsible for σ |S||T|/r are join output 

tuples. Through 1-Bucket-Theta practically 

guarantees in order to balance the actual cross-

product output throughout reducers. 

Algorithm 1: Map (Theta-Join) 

Input: input tuple x  ∈ S ∪T 

/* matrix to regionID mapping is loaded into a lookup 

table during initialization of mapper */ 

1: if x ∈S then 

2:   matrixRow = random(1,|S|) 

3:   for all regionID in lookup.getRegions(matrixRow) 

       do 

4:     Output (regionID, (x, “S”) ) /* key: regionID */ 

5: else 

6:   matrixCol = random(1,|T|) 

7:   for all regionID in lookup.getRegions(matrixCol)do 

8:      Output (regionID, (x, |T|) ) 

 

 

 

 

 

 

 

 

 

 

 

 

This particular may not be accurate for other 

joins. As an example, with some reducer most cross-

product tuples may satisfy the join condition, while 

almost not one do so on a different. Fortunately this 

is unlikely Due to the randomization which assigns 

arbitrary samples from S as well as T in order to each 

reducer.  Even though we do not need an analytical 

proof, the experiments show in which join output is 

actually generally quite evenly distributed over the 

reducers. This specific will be estimated so long as 

join output size will be large enough in order that 

testing variance will be “averaged out”.  Significant 

deviation in output size is most likely whenever join 

result size is very small, e.g., below a large number of 

tuples per reducer. However for these cases the 

entire join output size can be so small which a good 

significant output difference has only a little effect on 

the complete runtime. 

 In short, where ever join output size will be 

large sufficient in order to significantly impact job 

completion time,1-Bucket-Theta's randomized 

approach balances output perfectly across reducers. 

the idea is extremely A can be quite difficult in order 

to beat it with output-related costs.  For an additional 

algorithm to attain significantly lower total job 

completion time, it should have considerably lower 

input-related costs compared 1-Bucket-Theta.1-

Bucket-Theta essentially guarantees that will max-

reducer-input value reaches almost all 4 |𝑆||𝑇|/𝑟   

as well as generally it is much closer to 2 |𝑆||𝑇|/𝑟  ) 

hence the actual ratio among max-reducer-input  

associated with 1-Bucket-Theta versus any kind of 

competitive theta-join algorithm having a different 

matrix-to-reducer mapping is at many. 

Algorithm 2: Reduce (Theta-Join) 

Input: (ID,[(𝑥1,𝑜𝑟𝑖𝑔𝑖𝑛1), (𝑥2,𝑜𝑟𝑖𝑔𝑖𝑛2),…, 

(𝑥𝑘 ,𝑜𝑟𝑖𝑔𝑖𝑛𝑘 )]) 

1: Stuples = ∅; Ttuples = ∅ 

2: for all (𝑥𝑖 ,𝑜𝑟𝑖𝑔𝑖𝑛𝑖 ) in input list do 

3:   if 𝑜𝑟𝑖𝑔𝑖𝑛𝑖= “S” then 

4:     Stuples = Stuples∪ {(𝑥𝑖 )} 

5:   else 

6:     Ttuples = Ttuples∪ {(𝑥𝑖 )} 

7: joinResult = MyFavoriteJoinAlg(Stuples, Ttuples) 

8: Output( joinResult ) 
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4 |𝑆||𝑇|/𝑟

2 𝑥|𝑆||𝑇|/𝑟
 = 

2

 𝑥
 

4.2 JOIN CONDITION 

 When the join condition is often a user 

refused black box function, after that we have no 

idea of which join matrix cells include benefit false 

unless of course we actually assess the join condition 

intended for these types of cells. However, these 

particular failures the objective of this algorithm: To 

discover an effective join algorithm, we may have to 

compute this join for those cells we are considering 

since candidates intended certainly not covering 

them by any kind of reducer. Even though the join 

condition doesn't consist of user-defined functions, 

in used  it is sometimes hard to identify large regions 

inside the join matrix intended for which this 

algorithm can ensure that the entire are contains 

zero join result tuple.  

Before we explore this challenge inside more depth, 

think about the examples through the above figure. 

Assume which insides the two cases we compute the 

exactly same equi-join for that similar inputs. This 

partitioning inside the left example is much better, 

since it prevents the large input replication needed 

for 1-Bucket-Random’s cross-product depend 

dividing in the right example. It is achieved by not 

really covering huge parts of cells which contain no 

outcome tuples. 

 For that block of 3 by 4 cells with in the 

lower-left corner, histograms with S and also T could 

mean that predicate (S.A ≥ 8 ^T.A ≤ 7) contains with 

this matrix region. In order to not assign any kind of 

cell with this block into a reducer, the actual 

algorithm has to understand which none of the cells 

in the region fulfils the join condition. From the 

example, it's to indicate that  ∀ s ∈ S, t ∈ 𝑇: (s.A ≥ 8 

^t.A ≤ 7) => ≦ (s.A = t.A). While this can be easy to 

have an equi-join, it may be difficult and also 

expensive generally.  

 
Figure 4 : 8 Matrix-to-reducer mapping examples 

 

For every single candidate region, the particular 

algorithm needs to obtain the same predicates. After 

that it has to manage a few satisfiability solver 

algorithms in order to prove these predicates mean 

that the join condition is not really satisfiable. When 

join result tuples are generally “scattered” through-

out the join matrix, and then most significant matrix 

regions will certainly contain a few output tuples. To 

recognize regions without having join tuples, thus 

several small regions need to be examined, 

contributing in higher computational cost. 

4.3 M-BUCKET-I AND M-BUCKET-O 

 For input-size focused joins, we would like to 

get a matrix-to-reducer mapping that will reduce 

max-reducer-input. Obtaining this kind of an 

optimum deal with of all candidate cells generally is 

usually a hard problem, hence we propose a simple 

heuristic.  

Algorithm 3:  M-Bucket-I (Input) 

 Input: maxInput, k, M 

1: row = 0 

2:   while row <M.no Of Rows do 

3:       (row, k) = Cover Sub Matrix(row, maxInput, k, 

M) 

4:           if k < 0 then 

5:                return false 

6:           End If 

7.   End While 

 8. return true 

 We consider the corresponding algorithm 

since M-Bucket-I, since it needs more in depth input 

statistics along with minimizes max-reducer-Input. 

Recall that will M-Bucket-I has been designed to 

reduce max-reducer-input. For output-size 

dominated joins, you should minimize max-reducer-

output as a alternative. Due to this issue, we 

designed a heuristic known as M-Bucket-O. It 

continues such as M-Bucket-I, but instead of working 

together with an input-size limit maxInput, this 

limitations region by area and number of candidate 

cells along with in a region. observe that M-Bucket-I 

usually takes far better advantage of input 

histograms  when compared with M-Bucket-O, 

because it aware of just how many input tuples via 

each data set are part in order to each  single bucket. 

However, the specific output size of a bucket might 

be anything actually zero and the product from the 
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bucket counts. Hence M-Bucket-I may reliably 

equilibrium input-related costs despite relatively 

coarse-grained histograms, while M-Bucket-O may 

show significant output-cost difference actually for 

quite fine-grained histograms. 

5. EXPERIMENTATION RESULTS 

 The implementation was written in Java 

with each of the HadoopMapReduce Framework. We 

evaluated this implementation on a single node 

running Hadoop 0.21.0. 

There is absolutely no individual hardware 

requirement arranged for installing Hadoop. 

TYPE MINIMUM RECOMMENDED 

 Processor  1.8 Ghz  2.3 GHz 

 Memory   4 GB   8 GB 

 Hard Disk 

Space 
  100 GB   150 GB 

We existing results using the following data units: 

Cloud: It is a real data set that contains extended 

cloud reports coming from ships as well as land 

stations [38]. You will find 382 million records, each 

single along with 28 attributes, providing  a total data 

size associated with 28.8GB. 

Cloud-5-1, Cloud-5-2: These are generally two 

independent random types of 5 million records each 

and every single through Cloud. They may be used for 

experiments along with output-size. 

 
Synth-α: For a fixed α, it is a set of data set.  Both 

consist of 5 million records, each and every record 

like a single integer number among 1 and 100. 

Table 8: M-Bucket-I cost details (seconds) 

 

 

 

 

 

 

 

 

Step Number Of Buckets 

 1 10 100 1000 10000 

Quantiles 0 232 233 233 235 

Histogram 0 243 245 254 266 

Heuristic 0.78 0.58 1.75 1.76 1.78 

Join 63600 2153 636 482 465 

Total 63600.78 2628.58 1115.75 970.76 967.78 
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Table 9: M-Bucket-O Cost Details (Seconds) 

Step Number Of Buckets 

 1 10 100 1000 10000 

Quantiles 0 4.52 4.54 4.8 4.9 

Histogram 0 12.6 11.6 11.6 13.8 

Heuristic 0.06 0.04 0.05 0.22 0.87 

Join 802.8 2332 1076.8 968.6 796.8 

Total 802.86 2349.16 1092.99 985.22 816.37 

 
6. CONCLUSION 

 Beginning with the purpose of reducing total 

job completion time, we showed the way to define 

an excellent various join implementations applying 

suitable join matrix-to-reducer mappings. To be able 

to assistance arbitrary joins, we all initial proposed 1-

Bucket-Random, the randomized algorithm that may 

compute any kind of subset from the cross-product, 

i.e., just about any theta-join. We showed which the 

matrix-to-reducer mapping achieved through 1-

Bucket-Random will be provably near to optimal for 

any join along with significantly much larger output 

size as compared to its input size.   

 For any common class of joins for example 

equi-joins, inequality joins and also band-joins, we 

enhanced the runtime achieved through 1-Bucket-

Random utilizing our M-Bucket algorithms. These 

algorithms obtain improved runtime through 

exploiting input statistics having a equally lightweight 

test, and so compute selective join conditions 

effectively.  

 Our join model allows us to approximate 

max-reducer-input and also max-reducer-output for 

each and every single algorithm. An optimizer may 

apply conventional cost estimation techniques 

through databases, as the job completion time is 

depend upon the single reducer will get the greatest 

input and also the reducer which generates the 

maximum output. Local reducer computation will be 

straight responsive to traditional cost evaluation 

including CPU along with I/O cost. 
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