
International Journal of Engineering Research-Online

A Peer Reviewed International Journal
Articles available online http://www.ijoer.in

Vol.3., Issue.5., 2015
(Sept.-Oct.)

475 CH. SRINIVAS, K. VENKATA RAMANA

1 INTRODUCTION

The rapid growth of data volumes poses a

challenge in many scientific disciplines. Scientists

must process data sets gathered by means of large-

scale experiments along with sensors. The Volume of

data that is generated by all of us right from the start

of time until finally 2003 ended up being 5 billion

gigabytes. When you stack up the particular the

shape of disks it may complete an entire football

field. The same volume was created in each and

every a pair of days within 2011, and in each and

every five minutes within rate is growing extremely.

Although all of this data created can be meaningful

and are needed while highly processed, it is

becoming forgotten. 90% the actual world's

information was created with in the most recent

period.

One among the grand challenges associated

with data driven science is always to find interesting

patterns in massive high dimensional data sets that

may bring out to new hypotheses. This process is

currently limited by the large amount of required

human effort and the high computational cost.

Our goal is to develop novel scalable

exploratory analysis tools and algorithms in order to

help scientists search for potentially interesting

hypotheses with very large, high-dimensional data

sets. We focus on the join operation which is

essential for detecting correlations and relationships

between patterns in scientific data.

The contributions of this paper are listed in the

following.

Given two sets S and T, the join operation

returns the set of all pairs (s, t) that satisfy some join

condition C(s, t), where s ∈ S, t ∈ T, and C is a

Boolean function over the attributes of S and T.

A join operation with such a general join

condition C is called a theta-join. The joint operation

RESEARCH ARTICLE ISSN: 2321-7758

APPLICATION OF THETA JOIN USING MAP REDUCE FRAMEWORK

CH. SRINIVAS1, K. VENKATA RAMANA2
1,2Department of CS&SE, Andhra University College of Engineering (A), Visakhapatnam,

 Andhra Pradesh, India.

ABSTRACT

 Joins are very important for lot of data evaluation tasks although they are

not supported directly from the map reduce paradigm. Map-reduce use commodity

computer hardware which is quite simple to acquire. The Proposed join model

improves formation of and thinking with respect to joins throughout MapReduce. By

utilizing this model, we obtain an extremely easy randomized algorithm, termed 1-

Bucket-Theta, for applying theta joins with in a MapReduce framework. This kind of

algorithm needs minimal data (input cardinality) and also we offer proof that will for

a variety of join issues, it can be near to ideal or the ideal decision. Regarding a

number of the complications in which 1-Bucket-Theta isn't really the very best

choice, we indicate the best way to much better overall performance by applying

additional input statistics. Almost all algorithms could possibly be produced

'memory-aware', and they don't will need virtually any changes for the MapReduce

environment.

Keywords:MapReduce, Query Optimization, Theta Join Processing,

©KY Publications

CH. SRINIVAS

International Journal of Engineering Research-Online

A Peer Reviewed International Journal
Articles available online http://www.ijoer.in

Vol.3., Issue.5., 2015
(Sept.-Oct.)

476 CH. SRINIVAS, K. VENKATA RAMANA

is one of the fundamental relational operations and

frequently used to combine information from

multiple sources. In order to support arbitrary theta-

join predicates, we define a join model that will

simplifies generation associated with and thought

about feasible join algorithms.

We propose a randomized join algorithm

called 1-Bucket-Random that achieves near-optimal

execution time for output-size dominated join

problems. This algorithm is capable of processing any

theta-join, Such as the cross-product. This simply

desires nominal input statistics (cardinality ratio of

input sets) and still efficiently parallelizes the

computation. 1-Bucket-Random can be improved by

exploiting input statistics for selective joins. We

propose algorithms for a popular class of joins,

including equality, inequality and also band joins.

2. RELATED WORK

N. Dean et al [2] MapReduce possesses

emerged as one of the most common paradigm

intended for parallel processing, plus it by now

features a excellent effect on data management

research. One main reason behind its achievements

is the option of to a totally free open-source

implementation, Hadoop[1], and also a great

energetic developer group which keeps producing

upgrades and also introducing capabilities.

MapReduce seemed to be offered to make simpler

large-scale facts finalizing with spread and also

parallel architectures, in particular clusters regarding

commodity hardware.

Foto N. Afrati [3] Implementations

associated with map reduce are now being helpful to

execute several operations on very huge data. We

analyze strategies for joining various associations in

the map reduce environment. New strategy will

begin by simply determining the actual map key the

pair of attributes that determine the Reduce process

in order to which a Map process should send out a

unique tuple. Each attribute from the map-key will

get a share. Then, we look at two essential specific

cases: chain joins as well as star joins. In each and

every case we are able to establish the map-key and

establish the actual shares that deliver the least

replication.

F. Afrati et al [5] Join processing for

example, depends on input replication with in the

map phase to be able to calculate multi-way joins.

Provides the most effective of a multi-way join in one

MapReduce job, which just works for that Equi join

case. Since Theta join can’t always be answered by

simply making the particular join attribute the

partition key, thus, the perfect solution proposed in

not extended to resolve the situation of multi-way

Theta-joins.

3. THETA JOINS

The Theta-Join ∞𝜃 operator is the most

generic and can be any function of the participating

attributes from the two relations. The flexibility that

this operator gives us, allows for sophisticated

queries to be implemented. Several commonly used

instances of this operator exist, such as the Equi-Join,

where the function is the equality operator (=).

 Techniques that will enable effective parallel

execution connected with arbitrary theta-joins inside

MapReduce. Not any modifications from the

MapReduce environment are necessary, and also the

end user doesn’t even have to write any kind special-

purpose code to regulate data flow. Almost

everything is achieved simply by specifying the

suitable (sequential) Map and also reduce functions.

Particularly, we make the following primary

contributions.

1. We propose to hear a reducer primarily based cost

model along with join model that will simplifies

formation of and reasoning with regards to possible

theta-join implementations inside MapReduce.

2. We propose to hear the randomized algorithm

known as 1-Bucket- Theta intended for computing

any kind of theta-join, such as the cross-product, in

single MapReduce job. This kind of algorithm only

requires minimal input statistics (cardinality

associated input sets) but still effectively parallelizes

any kind of theta-join implementation. We show that

it must be close to optimal intended for joins having

large output size. regarding highly selective joins, we

indicate that will although much better

implementations inside MapReduce may exist, they

generally is not used, leaving behind 1-Bucket-Theta

since the very best available option.

3. For any common type of non equi joins, which

includes inequality and also band-joins, we propose

to here algorithms that will often improve in 1-

International Journal of Engineering Research-Online

A Peer Reviewed International Journal
Articles available online http://www.ijoer.in

Vol.3., Issue.5., 2015
(Sept.-Oct.)

477 CH. SRINIVAS, K. VENKATA RAMANA

Bucket-Theta, provided that sufficiently detailed

input statistics are available.

3.1 COST MODEL FOR MAPREDUCE

 Since cost intended for transferring data

from the DFS through the mapper nodes and also the

cost with regard to reading the input tuples locally on

each and every mapper is just not impacted by the

actual concrete Map along with Reduce functions, we

need not take these kinds of costs into consideration

for that optimization. Map and Reduce functions

impact the costs through providing Map function

output till writing a final join result to the DFS. To

analyze the particular completion time period of

those MapReduce job phases, look at a single

reducer.

 This reducer receives the particular subset

with the mapper output tuples as it's input. It sorts

the actual input by key, flows the matches value-list

for just a key, computes the join due to this list, then

writes their locally produces join tuples towards the

DFS.

(S,T) 5 7 7 7 8 9 (S,T) 5 7 7 7 8 9 (S,T) 5 7 7 7 8 9

5 5 5

7 7 7

7 7 7

8 8 8

9 9 9

9 9 9

Table:1 S.A = T.A Table: 2 abs (S.A = T.A) < 2 Table : 3 S.A >= T.A

Figure 1: Join matrices with equi join, similarity-join, and also inequality-join.

Numbers shows join attribute values

through S and T, shaded cells show join results. M(i,j)

shows cell numbering.

 Our cost model is applicable beyond

MapReduce, to any shared-nothing system. However,

systems with detailed data fragmentation statistics

can exploit data locality and reduce input transfer

cost which is not applicable in MapReduce context.

For output-size dominated join problems, our cost

model is applicable beyond MapReduce.

3.2 JOIN MODEL

a join in between two data sets S along with

T that has a join-matrix M as well as use this kind of

representation regarding creation of and also

reasoning about different join implementations with

in MapReduce. Figure 3 indicates example data sets

as well as the equivalent matrix intend for a various

range of join predicates. For row i as well since

column j, matrix access M (i, j) can be defined in

order to accurate (shaded inside the picture) when

the I
th

 tuple by S and j
th

 tuple by T satisfy the join

condition and also false (not filled) usually. Since any

kind of theta-join is really a subset from the cross-

product, this matrix can easily represent any kind of

join condition.

Our objective is usually to have each join

output tuple always produced by specifically one

reducer, so that expensive post-processing as well as

duplicate removing is avoided. Therefore, given r

reducers we should map every matrix cell along with

value M (i, j) accurate in order to specifically among

the r reducers.

We may also suggest that reducer R insures

the join matrix cell, just in case this kind of cell will be

mapped to R. There are various feasible mappings

that handle all true valued matrix cells. Our objective

is to discover that mapping from join matrix cells in

order to reducers that will minimize job completion

time. For this reason we would like to find mappings

that will either balance reducer input share or even

balance reducer output share or even achieve a

compromise between both .

Table 4 :- R1: keys 5,8 Inputs are: S1,S4, T1,T5 and

Output: 2 tuples

 R2: key 7 Inputs are: S2,S3, T2,T3,T4 and

Output: 6 tuples

 R1: key 9 Input are : S5,S6,T6 and Output:

2 tuples

max−reducer−input is = 5

max−reducer−output is = 6

International Journal of Engineering Research-Online

A Peer Reviewed International Journal
Articles available online http://www.ijoer.in

Vol.3., Issue.5., 2015
(Sept.-Oct.)

478 CH. SRINIVAS, K. VENKATA RAMANA

(S,T) 5 7 7 7 8 9 (S,T) 5 7 7 7 8 9 (S,T) 5 7 7 7 8 9

5 5 5 3 5

7 7 7 2 3 1 7 1 2

7 7 3 1 2 7

8 8 8 1 8

9 9 9 2 9 3

9 9 1 9

Table 4 Table 5 Table 6

Figure 2: Matrix-to-reducer mappings along with standard (left) equi-join algorithm, (center) random and also

balanced (right) approach

Table 5 : R1: key 1 Inputs are: S3,S2,S6,S4,T4,T3,T6,T5

and Output: 4 tuples

R2: key 2 Inputs are: S2,S5,S3,T2,T6,T4 and Output: 3

tuples

R3: keys 3 Input: S1,S2,S3,T1,T2,T3 and Output is : 3

tuples

max−reducer−input is = 8

max−reducer−output is = 4

Table 6 :- R1: key 1 Inputs are: S1,S2,S3,T1,T2 and

also Output: 3 tuples

R2: key 2 Inputs are: S2,S3,T3,T4 and also Output: 4

tuples

R3: keys 3 Inputs are: S4,S5,S6,T5,T6 and also Output:

3 tuples

max−reducer−input is = 5,

max−reducer−output is = 4

the new algorithm denotes the actual practical

implementations of this type of simple idea. balance

input and also output costs although minimizing

replication of reducer input tuples. We may

frequently make use the following important lemma.

4. THE 1-BUCKET-THETA ALGORITHM

 The actual challenges for implementing joins

within MapReduce: data skew and also the difficulty

involving implementing non - equi joins along with

key-equality based mostly data flow control. We have

now expose 1-Bucket-Theta, a algorithm of which

addresses these challenges, and gives robust

analytical results regarding their properties.

Figure 3: 1-Bucket-Theta Join Matrix Partitioning

Table 1: 1-Bucket-Theta theorems’symbols

Symbol Explanation

|S| sizeofrelationS

|T| size of relationT

Q reducer’sinput

P number ofreducers

cS how many optimal squares of the

corre-

sponding side-length can fit into

thema-trixhorizontally cT how many optimal squares of the

corre-

sponding side-length can fit into

thema-trixvertically 1-Bucket-Theta inspects almost all tuple

pairs, and involves only minimal statistical data,

which is the cardinalities from the input, which

makes it one of the most tgeneric algorithms.

The actual point on this algorithm could be

the fundamental method which it divides the JM, by

giving 3 theorems (those are listed below) as well as

certain lemmas to guide them, in a manner that

almost all cells are covered and simultaneously, the

most reducer input metric can be minimized. It can

be suited to higher selectivity joins (e.g. >50%). This

cross-product includes each and every tuple from S

along with every single tuple from T, the particular

matching join matrix offers almost all entries set

to accurate. We explain the way 1-Bucket-Theta

does matrix-to-reducer mapping, indicate that it

must be near-optimal for computing the particular

cross-product, and also discuss how most of these

results extend to processing associated with theta-

joins.

These three theorems will be the key points

of 1-Bucket-Theta and provide us strong ensures with

the near optimality from the algorithm for

International Journal of Engineering Research-Online

A Peer Reviewed International Journal
Articles available online http://www.ijoer.in

Vol.3., Issue.5., 2015
(Sept.-Oct.)

479 CH. SRINIVAS, K. VENKATA RAMANA

implementing this Cross Product case, and can be

described as:

•THEOREM 1: If |S| and |T| are multiples

of |𝑆||𝑇|/𝑝 , the JM can be partitioned into 𝑐𝑠 by

𝑐𝑇 |𝑆||𝑇|/𝑝 squares of size |𝑆||𝑇|/𝑝 each.

•THEOREM 2: If |S| < |T|/p, then the JM can be

partitioned by a single row of r rectangles of size |S|

by |T|/p.

•THEOREM 3: If |T/p| ≤ |S| ≤ |T| , then a

partitioning can always be found with the properties:

not any reducer produces greater than 4|S||T|/p

output tuples and not any reducer receives greater

than 4 |𝑆||𝑇|/𝑝 input tuples.

4.1 IMPLEMENTING THETA-JOINS

 While we exhibited over that this

MapReduce implementation will be close to

optimum for cross-product computation, this kind of

result will not always carry up to arbitrary joins. This

segment provides solid evidence that actually

intended for extremely selective join conditions, it is

sometimes difficult to help along with a better

algorithm compared 1-Bucket-Theta. They will just

cannot be seen as correct implementations using the

information available at that time when the ideal

implement-tation will be selected to get a given join

problem, as we show now.

 Consider an arbitrary theta-join along with

selectivity σ, i.e., it produces σ |S||T| are output

tuples. To reduce max-reducer- output, each reducer

need to be responsible for σ |S||T|/r are join output

tuples. Through 1-Bucket-Theta practically

guarantees in order to balance the actual cross-

product output throughout reducers.

Algorithm 1: Map (Theta-Join)

Input: input tuple x ∈ S ∪T

/* matrix to regionID mapping is loaded into a lookup

table during initialization of mapper */

1: if x ∈S then

2: matrixRow = random(1,|S|)

3: for all regionID in lookup.getRegions(matrixRow)

 do

4: Output (regionID, (x, “S”)) /* key: regionID */

5: else

6: matrixCol = random(1,|T|)

7: for all regionID in lookup.getRegions(matrixCol)do

8: Output (regionID, (x, |T|))

This particular may not be accurate for other

joins. As an example, with some reducer most cross-

product tuples may satisfy the join condition, while

almost not one do so on a different. Fortunately this

is unlikely Due to the randomization which assigns

arbitrary samples from S as well as T in order to each

reducer. Even though we do not need an analytical

proof, the experiments show in which join output is

actually generally quite evenly distributed over the

reducers. This specific will be estimated so long as

join output size will be large enough in order that

testing variance will be “averaged out”. Significant

deviation in output size is most likely whenever join

result size is very small, e.g., below a large number of

tuples per reducer. However for these cases the

entire join output size can be so small which a good

significant output difference has only a little effect on

the complete runtime.

 In short, where ever join output size will be

large sufficient in order to significantly impact job

completion time,1-Bucket-Theta's randomized

approach balances output perfectly across reducers.

the idea is extremely A can be quite difficult in order

to beat it with output-related costs. For an additional

algorithm to attain significantly lower total job

completion time, it should have considerably lower

input-related costs compared 1-Bucket-Theta.1-

Bucket-Theta essentially guarantees that will max-

reducer-input value reaches almost all 4 |𝑆||𝑇|/𝑟

as well as generally it is much closer to 2 |𝑆||𝑇|/𝑟)

hence the actual ratio among max-reducer-input

associated with 1-Bucket-Theta versus any kind of

competitive theta-join algorithm having a different

matrix-to-reducer mapping is at many.

Algorithm 2: Reduce (Theta-Join)

Input: (ID,[(𝑥1,𝑜𝑟𝑖𝑔𝑖𝑛1), (𝑥2,𝑜𝑟𝑖𝑔𝑖𝑛2),…,

(𝑥𝑘 ,𝑜𝑟𝑖𝑔𝑖𝑛𝑘)])

1: Stuples = ∅; Ttuples = ∅

2: for all (𝑥𝑖 ,𝑜𝑟𝑖𝑔𝑖𝑛𝑖) in input list do

3: if 𝑜𝑟𝑖𝑔𝑖𝑛𝑖= “S” then

4: Stuples = Stuples∪ {(𝑥𝑖)}

5: else

6: Ttuples = Ttuples∪ {(𝑥𝑖)}

7: joinResult = MyFavoriteJoinAlg(Stuples, Ttuples)

8: Output(joinResult)

International Journal of Engineering Research-Online

A Peer Reviewed International Journal
Articles available online http://www.ijoer.in

Vol.3., Issue.5., 2015
(Sept.-Oct.)

480 CH. SRINIVAS, K. VENKATA RAMANA

4 |𝑆||𝑇|/𝑟

2 𝑥|𝑆||𝑇|/𝑟
 =

2

 𝑥

4.2 JOIN CONDITION

 When the join condition is often a user

refused black box function, after that we have no

idea of which join matrix cells include benefit false

unless of course we actually assess the join condition

intended for these types of cells. However, these

particular failures the objective of this algorithm: To

discover an effective join algorithm, we may have to

compute this join for those cells we are considering

since candidates intended certainly not covering

them by any kind of reducer. Even though the join

condition doesn't consist of user-defined functions,

in used it is sometimes hard to identify large regions

inside the join matrix intended for which this

algorithm can ensure that the entire are contains

zero join result tuple.

Before we explore this challenge inside more depth,

think about the examples through the above figure.

Assume which insides the two cases we compute the

exactly same equi-join for that similar inputs. This

partitioning inside the left example is much better,

since it prevents the large input replication needed

for 1-Bucket-Random’s cross-product depend

dividing in the right example. It is achieved by not

really covering huge parts of cells which contain no

outcome tuples.

 For that block of 3 by 4 cells with in the

lower-left corner, histograms with S and also T could

mean that predicate (S.A ≥ 8 ^T.A ≤ 7) contains with

this matrix region. In order to not assign any kind of

cell with this block into a reducer, the actual

algorithm has to understand which none of the cells

in the region fulfils the join condition. From the

example, it's to indicate that ∀ s ∈ S, t ∈ 𝑇: (s.A ≥ 8

^t.A ≤ 7) => ≦ (s.A = t.A). While this can be easy to

have an equi-join, it may be difficult and also

expensive generally.

Figure 4 : 8 Matrix-to-reducer mapping examples

For every single candidate region, the particular

algorithm needs to obtain the same predicates. After

that it has to manage a few satisfiability solver

algorithms in order to prove these predicates mean

that the join condition is not really satisfiable. When

join result tuples are generally “scattered” through-

out the join matrix, and then most significant matrix

regions will certainly contain a few output tuples. To

recognize regions without having join tuples, thus

several small regions need to be examined,

contributing in higher computational cost.

4.3 M-BUCKET-I AND M-BUCKET-O

 For input-size focused joins, we would like to

get a matrix-to-reducer mapping that will reduce

max-reducer-input. Obtaining this kind of an

optimum deal with of all candidate cells generally is

usually a hard problem, hence we propose a simple

heuristic.

Algorithm 3: M-Bucket-I (Input)

 Input: maxInput, k, M

1: row = 0

2: while row <M.no Of Rows do

3: (row, k) = Cover Sub Matrix(row, maxInput, k,

M)

4: if k < 0 then

5: return false

6: End If

7. End While

 8. return true

 We consider the corresponding algorithm

since M-Bucket-I, since it needs more in depth input

statistics along with minimizes max-reducer-Input.

Recall that will M-Bucket-I has been designed to

reduce max-reducer-input. For output-size

dominated joins, you should minimize max-reducer-

output as a alternative. Due to this issue, we

designed a heuristic known as M-Bucket-O. It

continues such as M-Bucket-I, but instead of working

together with an input-size limit maxInput, this

limitations region by area and number of candidate

cells along with in a region. observe that M-Bucket-I

usually takes far better advantage of input

histograms when compared with M-Bucket-O,

because it aware of just how many input tuples via

each data set are part in order to each single bucket.

However, the specific output size of a bucket might

be anything actually zero and the product from the

International Journal of Engineering Research-Online

A Peer Reviewed International Journal
Articles available online http://www.ijoer.in

Vol.3., Issue.5., 2015
(Sept.-Oct.)

481 CH. SRINIVAS, K. VENKATA RAMANA

bucket counts. Hence M-Bucket-I may reliably

equilibrium input-related costs despite relatively

coarse-grained histograms, while M-Bucket-O may

show significant output-cost difference actually for

quite fine-grained histograms.

5. EXPERIMENTATION RESULTS

 The implementation was written in Java

with each of the HadoopMapReduce Framework. We

evaluated this implementation on a single node

running Hadoop 0.21.0.

There is absolutely no individual hardware

requirement arranged for installing Hadoop.

TYPE MINIMUM RECOMMENDED

 Processor 1.8 Ghz 2.3 GHz

 Memory 4 GB 8 GB

 Hard Disk

Space
 100 GB 150 GB

We existing results using the following data units:

Cloud: It is a real data set that contains extended

cloud reports coming from ships as well as land

stations [38]. You will find 382 million records, each

single along with 28 attributes, providing a total data

size associated with 28.8GB.

Cloud-5-1, Cloud-5-2: These are generally two

independent random types of 5 million records each

and every single through Cloud. They may be used for

experiments along with output-size.

Synth-α: For a fixed α, it is a set of data set. Both

consist of 5 million records, each and every record

like a single integer number among 1 and 100.

Table 8: M-Bucket-I cost details (seconds)

Step Number Of Buckets

 1 10 100 1000 10000

Quantiles 0 232 233 233 235

Histogram 0 243 245 254 266

Heuristic 0.78 0.58 1.75 1.76 1.78

Join 63600 2153 636 482 465

Total 63600.78 2628.58 1115.75 970.76 967.78

International Journal of Engineering Research-Online

A Peer Reviewed International Journal
Articles available online http://www.ijoer.in

Vol.3., Issue.5., 2015
(Sept.-Oct.)

482 CH. SRINIVAS, K. VENKATA RAMANA

Table 9: M-Bucket-O Cost Details (Seconds)

Step Number Of Buckets

 1 10 100 1000 10000

Quantiles 0 4.52 4.54 4.8 4.9

Histogram 0 12.6 11.6 11.6 13.8

Heuristic 0.06 0.04 0.05 0.22 0.87

Join 802.8 2332 1076.8 968.6 796.8

Total 802.86 2349.16 1092.99 985.22 816.37

6. CONCLUSION

 Beginning with the purpose of reducing total

job completion time, we showed the way to define

an excellent various join implementations applying

suitable join matrix-to-reducer mappings. To be able

to assistance arbitrary joins, we all initial proposed 1-

Bucket-Random, the randomized algorithm that may

compute any kind of subset from the cross-product,

i.e., just about any theta-join. We showed which the

matrix-to-reducer mapping achieved through 1-

Bucket-Random will be provably near to optimal for

any join along with significantly much larger output

size as compared to its input size.

 For any common class of joins for example

equi-joins, inequality joins and also band-joins, we

enhanced the runtime achieved through 1-Bucket-

Random utilizing our M-Bucket algorithms. These

algorithms obtain improved runtime through

exploiting input statistics having a equally lightweight

test, and so compute selective join conditions

effectively.

 Our join model allows us to approximate

max-reducer-input and also max-reducer-output for

each and every single algorithm. An optimizer may

apply conventional cost estimation techniques

through databases, as the job completion time is

depend upon the single reducer will get the greatest

input and also the reducer which generates the

maximum output. Local reducer computation will be

straight responsive to traditional cost evaluation

including CPU along with I/O cost.

7. REFERENCES

[1]. Apache hadoop. http://hadoop.apache.org.

[2]. J.Dean and S.Ghemawat. Mapreduce: Simplified

data processing on large clusters. InOSDI, 2004.

[3]. F.N.Afrati and J.D.Ullman. Optimizing joins in a

map-reduce environment. InEDBT, pages 99-

110,2010.

[4]. A.Okcan and et al. Processing theta-joins using

mapreduce. InSIGMOD, pages 949–960, 2011.

[5]. F.N.Afrati and J.D.Ullman. Optimizing multiway

joins in a map-reduce environment. IEEE Trans.

Knowl. Data Eng.,23(9):1282–1298,2011.

[6]. Ioannis K. Koumarelas et al. Binary Theta-Joins

using MapReduce: Efficiency Analysis and

Improvements.

