
International Journal of Engineering Research-Online

A Peer Reviewed International Journal
Articles available online http://www.ijoer.in

Vol.3., Issue.3., 2015
(May-June)

771 NEERAJ KUMAR DUBEY, Dr. SANJAY AGRAWAL

INTRODUCTION
 Geospatial queries play an important role in

modern day life. Any query which is related to

geospatial data is called as geospatial query.

Geospatial data can be understood as the data which

is related to particular location or defines some

place. Geospatial data contains the information

about the geography of locations. Due to

advancement of recent technology which is based on

geospatial data the size of geospatial data has grown

very fast. Geospatial data is accessed by geospatial

query. Due to huge size of geospatial data there is

need of efficient technique to process spatial query.

Hadoop is an emerging technology which can process

and store large data very efficiently and effectively.

 Find nearest location is one of the well-

known spatial queries. This is used to find the nearest

location from any specified or current location. There

are many methods are in existence for finding

nearest location like- zip code method, K-D tree

method, polygon method, Voronoi diagram etc. but

each method are not able to process large data and

these are not able to find nearest location with high

precision.

 Geohashing is a technique which is used to

generate geohash code from <latitude, longitude>

pair. It is known that every particular location has its

own coordinates (<latitude, longitude>). We used

geohash code for finding nearest places. We can find

more nearer location by using geohash as compare to

other methods. We used hadoop technology for

processing and storing large spatial data. For the

storage purpose Hadoop distributed file system is

used and for processing we used pig.

 The rest of the paper is organized as follows:

section II discusses the background and related work;

section III discusses about gaps and drawbacks in

existing system; in section IV proposed algorithm is

described; and finally last section IV contains the

conclusion.

RESEARCH ARTICLE ISSN: 2321-7758

AN EFFICIENT APPROACH TO FIND NEAREST LOCATION USING GEOHASHING ON HADOOP

AND PIG

NEERAJ KUMAR DUBEY1, Dr. SANJAY AGRAWAL2
1
Department of Computer Technology and Application, M.Tech Scholar NITTTR, Bhopal., M.P India

2
Department of Computer Technology and Application, Professor and Dean of Research NITTTR, Bhopal., M.P, India

ABSTRACT

Geospatial query plays an important role in modern era. ”Find Nearest location”

is one of the most important geospatial query. There are many methods in

existence which are used to answer the query “Find Nearest Location” but

somehow every methods have some drawbacks and gaps. And due to huge

amount of spatial data traditional database system like RDMS are not able to

process and store such large amount of data efficiently. Hadoop is an emerging

technology which is used to store and process large amount of data efficiently.

Pig provides a good platform to process huge amount of data in parallel. We

solved the nearest locations problem by using geohashing. We proposed an

algorithm for finding nearest location. Here we developed two UDF for pig one

for geohashing and another for prefix matching.

Keywords—Geohashing, hadoop, pig, geocoding, UDF, Spatial Data, Spatial

Query.

©KY PUBLICATIONS

NEERAJ KUMAR

DUBEY

International Journal of Engineering Research-Online

A Peer Reviewed International Journal
Articles available online http://www.ijoer.in

Vol.3., Issue.3., 2015
(May-June)

772 NEERAJ KUMAR DUBEY, Dr. SANJAY AGRAWAL

background and related work
Hadoop
 Hadoop has emerged as an outstanding

platform in the area of Big Data for data processing.

It provides a reliable storage and high performance in

the area of Big Data [3]. It analysis system that is

scalable and build from commodity hardware.

Hadoop mainly known by its two components first is

its distributed storage component called HDFS

(Hadoop Distributed File System). It is a single,

consolidated storage platform [3]. In HDFS platform

structured and complex data might be combined

easily. Second and important component of Hadoop

is MapReduce which is a computation framework.

This framework also called as processing framework

of Hadoop. It exploits the distributed storage

architecture of HDFS to provide scalable, reliable

parallel processing services for arbitrary algorithms

[3].

Geohashing
 Geohashing is a technique which is used to

convert <latitude, longitude> pair into a unique

alpha-numeric code. It is known that every location

of the world have a <latitude, longitude> pair.

Geohashing converts this <latitude, longitude> pair

into a code known as geohash code. Geohash code is

alphanumeric code. It is a base 32 code. Base 32

codes are generated by dividing the world into “0”

and “1” and after getting a large binary number each

5 bit binary are combined for a specific character.

Pig
 Pig provides an engine for executing and

processing data in parallel on Hadoop. It uses a

language which is known as pig Latin. Pig Latin

includes number of operators like join, sort, merge,

etc. which is used like traditional data operators.

Apart from these operators pig also provides some

facilities in which user can wright their own function

for reading, processing, and writing data called as

UDF (User Defined Function). Pig UDF for geohash

code and UDF for prefix matching is developed for

our work. UDF for geohashing is used to convert

<latitude, longitude> pair into geohash code and UDF

for prefix matching is used for matching of geohash

codes. Pig is an open source project of apache. This

means users can download pig source or binary free,

use it for themselves, and contribute to it. Pig runs on

hadoop it means the execution engine of pig runs on

hadoop. Pig itself performs various mapreduce

optimization activities. Pig runs on hadoop and it

makes use of both the Hadoop Distributed File

System (HDFS) for storage, MapReduce for

processing.

Finding Nearest Location using ZIP code
 In these days almost every business has a

functionality of “Find Location” on their websites

which gives nearest locations for a given address or

Zip code. For answer the query of “Find Location”, zip

code method performs matching. It matches with zip

code of all places which is stored in database one by

one and the zip code which falls under the same zip

code [3] , it provide that zip code as closest

locations. So those places whose zip will match with

particular locations zip will be displayed. It is clear

that places which will fall under the same zip would

belong to same region and it would be near to each

other [3].

Finding the Nearest Locations Using Polygons
 Finding nearest location using polygons is

just an advancement of zip code method. In this

method a zip code is represented by “polygon” in

some geospatial framework. A polygon is an area

which is defined on the map and it has certain

defined boundaries [3]. One can also define its own

set of polygons on the original polygons in some

geospatial framework. So a new polygon can be a zip

or it may be extended by any much at any point. So

now the shape created after defining the polygon will

be mattered. It is very simple with an address

because just a polygon has to be created, which is a

circle around one point [3]. Then queries can be done

which will be based on all the new points that have

been defined in the newly created polygon. This

method is mostly adopted by sites. They display only

those points or locations that fall within the defined

boundary. And they can themselves define this

polygon boundary which can be of 5km or 10km. so

in polygon method for nearest location we can define

any set of polygon of our choice with some specified

boundaries and can find our desired location in that

boundary [3].

Finding Nearest Location Using Voronoi Diagram
 A Voronoi diagram can be used to find the

nearest locations. It divides space into number of

regions. To make Voronoi diagram first of all number

of points must be specified, which are called as sites

or seeds [3]. And then on the basis of those seeds a

region is made around each site. Those regions

International Journal of Engineering Research-Online

A Peer Reviewed International Journal
Articles available online http://www.ijoer.in

Vol.3., Issue.3., 2015
(May-June)

773 NEERAJ KUMAR DUBEY, Dr. SANJAY AGRAWAL

describes that all points in that region will be nearest

point to that particular site than any other site. The

defined regions are called as Voronoi cells [15].

Finding Nearest Location using K-D Tree
 We can find out nearest point of interest

using k-d tree. The searching procedure performed in

k-d tree is more efficient and the time complexity for

searching is log(n) [3]. The goal of finding nearest

neighbor by k-d tree is done by searching a point in

the tree that is close to a user input point. The

searching process don in k-d tree by following ways.

1.Algorithm starts with root vertex and run on tree

recursively, in the same way that it would if the

search point were being added it means it goes left

sub-tree or right sub-tree depending on whether the

search point is less than or greater than the current

vertex in the split dimension.

2. Once the algorithm reached at a leaf vertex then

that vertex point is saved as the “current best”.

3.The algorithm relax the recursion of the tree by

performing the following steps at each vertex:

3.1. If the current vertex is nearer than the current

best then that vertex will be declared as current best.

3.2 The algorithm also checks whether there could be

any points on the other side of dividing plane that is

more nearer to the search point than the current

best. This process is done by intersecting the dividing

hyper-plane with a hyper-sphere around the search

point that has radius which is equal to the current

nearest best. Usually the hyper-planes are all axis-

aligned this is implemented by performing a simple

comparison to see whether difference of distance

between the dividing coordinate of the search point

and current vertex is less than distance from search

point to the current best.

3.2.1. If the hyper-sphere crosses over the plane then

there could be a possibility of having nearer points on

the other side of the plane by which the algorithm

would step down to the other branch of the tree

from the current vertex looking for closer points. This

step will be performed in recursive step for entire

search.

3.2.2. If the hyper-sphere doesn't intersect the plane

which is used for divide, then the algorithm continues

step up the tree and the whole branch on the other

side of that vertex is eliminated.

4. When the algorithm finishes this process for the

root vertex then it considered that searching process

is complete.

Gaps in existing methods
 As various strategies and algorithm to find

nearest neighbors has been seen. They all are works

good in particular case or situation but might be

inefficient in different situations. So now we will have

a case study of gaps of these methods one by one as

compared to our proposed method.

Gaps in Zip code
 Zip code method worked according to zip

code. If someone wants to find the nearest location

with respect to current location then zip code

algorithms will show all the location with zip code

same with provided zip code. But this method fails in

various situations. Zip code method does not provide

nearest location it provides range of locations. Zip

code algorithm does not give accurate answer. As we

know that it works on zip code number so this

algorithm just consider the fact the locations which

are in same zip code or mostly nearest to each other

but it is not correct always. We can understand the

failure of zip code method by an example. Let us say

that someone is standing at the corner of a city and

wants he want to find the nearest ATM. Now zip

code method will give all the address of ATM which

falls in the same city or have same zip code. But it is

not an accurate solution because in this case he is

standing at the corner of city and the ATM of other

city having different zip code might be closer. It can

be understood by figure 1 shows the current location

which is shown by red circle and all other green circle

shows location of different things like temple, pub,

and restaurant in the city. Cities are represented by

curvy box. And ATMs are represented by orange

colored box.

Figure 1: Gaps in zip code method

International Journal of Engineering Research-Online

A Peer Reviewed International Journal
Articles available online http://www.ijoer.in

Vol.3., Issue.3., 2015
(May-June)

774 NEERAJ KUMAR DUBEY, Dr. SANJAY AGRAWAL

 Figure 2 represents the location which was

given as output of the query to find the nearest ATM.

So it showed ATM of the city which is in the same zip

code and so far from current location while the city B

ATM is closer to current location

Figure 2: Gaps in zip code method
Gaps in Polygon method
 Polygon method considers the zip area of a

city as a polygon by this it gives the output based on

the polygon area. So if anyone puts a query to find

any nearest location then this method will reply

based on the polygon in which the current location

lies. Polygon method does not take any distance in

consideration. The default polygon is the area of city

but polygon may be customized. One can also draw

his or her own polygon of desired area by this way

result can be more precise and correct. If someone

wants more precise result then he keeps on

decreasing the area of polygon. But this method does

not provide guarantee for nearest location. It also

possible that someone may think that he can get the

point of interest by continuously decreasing the area

of polygon but this is impractical. It works better to

find the range of location. And in polygon method

there would be need of pre well defined map on

which this method will be applied; only database of

location would not solve this purpose.

Gaps in K-d trees
 K-d trees basically works on the points.

These points lie in 2D plane. In k-d tree methodology

first all 2D points or converted into K-d tree and then

generated K-d tree will be used to find the nearest

neighbor of any point. The height of K-d tree is log(n)

always by which searching process gets improved.

But the problem with K-d tree method is that it

cannot be suitable for search nearest point of

interest as we desire, because K-d tree works on

points on 2D plane from which it calculates distance

between points. These points can be understood as

(longitude, latitude) pair of a location but these

points cannot be represented in a 2D plane, the

reason is distance between two particular longitudes

does not remain same always.

 So this algorithm is not suitable there.

Moreover if we think to use the actual distances

between every two places in the database, then this

approach would be infeasible and impractical.

Figure 3: Longitude and latitudes of earth

Gaps in Voronoi diagrams
 A Voronoi diagram is a technique of dividing

a large space into number of regions. A set of points

called as seeds or sites or generator is specified prior

and for each seed there will be corresponding regions

which consists all points closer to that seeds or

generator than to any other. The regions or known as

Voronoi cells. Those points can be any location in the

city like ATM, school, college, pub etc. When

someone queries to find the nearest point of interest

from any current location then in Voronoi methods

first it will be seen that current location is falling in

which region. And second, the point of that region

around which the region is drawn is chosen as

nearest location. Now let’s see the drawback of

voronoi diagram algorithm, the first and big

drawback of voronoi diagram method is that it is not

practical to draw a very big voronoi diagram like the

voronoi diagram which is converting whole nation or

larger part of nation. By which it is only suitable for

smaller area like city or street level. Voronoi diagram

method is not suitable for unbounded data. Second

drawback of voronoi diagram is- there are so many

International Journal of Engineering Research-Online

A Peer Reviewed International Journal
Articles available online http://www.ijoer.in

Vol.3., Issue.3., 2015
(May-June)

775 NEERAJ KUMAR DUBEY, Dr. SANJAY AGRAWAL

categories of point of interest like school, college,

hospital, lake, pub, theater, bank, ATM etc. One may

put a query to find anyone of that or all of that or

some of that. In the case of voronoi diagrams it will

be required to draw different voronoi diagram for

each and every different category because voronoi

diagram cannot shows all the location in a single

diagram. So if a voronoi diagram is implemented for a

city or for an area then there would be need of so

many diagrams for each category of location. So it

creates a heavy load on database. So it is an

inefficient method. Now it can be seen that none of

the method have been implemented with HADOOP

PIG yet and they are not suitable for solving in any

accurate way. So the given proposed solution will be

effective and efficient with respect to time and

accuracy both.

IV PROPOSED ALGORITHM
 The problem of finding nearest point of

interest from a large database containing multiple

categories data like school, college, library,

restaurant in single query of user is solved by using

hadoop and pig. Pig is capable to process large spatial

data.

 Now every location has its own (latitude

longitude) value which is unique. So we will indicate

the location by its (longitude, latitude) pair in our

implementation. One can find different categories or

different types of places which is nearer to his

current location as an output of our work.

 We developed an algorithm for finding

nearest point of interest with use of geohash. We

implemented our algorithm on pig latin. An UDF

(User Defined Function) for converting (latitude,

longitude) pairs is developed after that another UDF

for highest common prefix match is developed which

will be used for matching of geohash code. And at

last our algorithm pick more nearer place from every

category like library, school, ATM, park etc.

A. Algorithm for Finding Nearest Location
Using Pig Latin
UDF for geohashing and prefix matching is used for

finding nearest places. Algorithm 1 &2 describes the

process of converting large input file having latitude,

longitude pair into another input file which adds a

new field called as geohash which is generated by

UDF. UDF of geohashing and prefix matching are

developed in a project file name as “thesis”. So we

have to create a jar for accessing these UDF.

Following Algorithm describes the process of finding

nearest places from current location.

Algorithm1

1. REGISTER A.jar// JAR file which contains the

udf of geohashing and prefix matching

2. Load the input file with their schema having

latitude, longitude from hdfs to pig flow

3. Generate a new input file with an extra field

name as geohash by using UDF of

geohashing which converts (latitude,

longitude) pair into geohash code.

Algorithm 2

1. Load the current location ((latitude,

longitude) pair) or user specified location

from hdfs to pig flow.

2. Convert the current location’s latitude and

longitude into geohash by using UDF.

3. Perform matching between current geohash

codes with each geohash code from stored

input file by using UDF of prefix matching.

And store the result with all fields of input

file and one additional field name as count.

4. Group the input records which is obtained

by step3 by type (e.g. library, school, airport

etc.)

5. Foreach record obtained from step4 do

5.1. DLOCATION = Order each records from

step3 by match count DESC;// descending

order

5.2. DLIMIT = limit DLOCATION 1;// it will return

only one record from each category

5.3. Generate flatten(group), flatten(address),

flatten(city);

6. Store the result back into hdfs

B. Flow charts
Flowchart for Geohash Code:

International Journal of Engineering Research-Online

A Peer Reviewed International Journal
Articles available online http://www.ijoer.in

Vol.3., Issue.3., 2015
(May-June)

776 NEERAJ KUMAR DUBEY, Dr. SANJAY AGRAWAL

Figure 4 Generation of Geohash code for input file

The flow diagram for geohash code shows the

functioning of UDF for geohash in simple way:

1. First, the entire input data file having <latitude,

longitude> pair is stored from local machine to

hadoop file system.

2. Now the input data file with <latitude,

longitude> is loaded from HDFS into pig flow by

pig Latin for operation.

3. UDF for geohash code is applied on data file for

the generation of geohash code for each

<latitude, longitude> pair.

4. Data file with geohash code as another field is

stored again in hdfs.

Flowchart for finding nearest places:

The flow diagram 5 for finding nearest places

describes the process of finding nearest places from

any desired location.

 Data file with geohash code is loaded from

hdfs to pig flow.

 User specified <latitude, longitude> pair is

converted into geohash code by UDF

 Matching is performed between geohash

codes of user specified location with every

geohash code present in data file by prefix

matching UDF.

 Group each record by type field.

 Data file is sorted on the basis of match

count which generated by UDF of prefix

matching in descending order.

 Finally records with maximum match count

value from each type will be given as output

by pig latin.

Figure 5 Flowchart for finding nearest location

Conclusion
 The amount of geospatial data is growing

day by day. Traditional database management

system like RDBMS is not compatible to store such

huge amount of data. Hadoop is an emerging

technology, it provides framework to store and

process huge amount of data in efficient way. Pig is a

framework which is used to process large amount of

International Journal of Engineering Research-Online

A Peer Reviewed International Journal
Articles available online http://www.ijoer.in

Vol.3., Issue.3., 2015
(May-June)

777 NEERAJ KUMAR DUBEY, Dr. SANJAY AGRAWAL

data in effective way. “Find Nearest Location” is one

of most important query on geospatial data. There

are many methods for finding nearest location but

somehow each have some gaps and drawbacks. We

have used geohashing technique for finding nearest

location. Huge geospatial data is processed on

hadoop cluster by hadoop component pig. We have

implemented PIG UDF for geohashing. UDF for

geohashing is used for converting <latitude,

longitude> pair into alphanumeric code which is

called as geohash code. We have used the advantage

of geohash to answer the query “Find Nearest

Location”. A PIG UDF for prefix matching has been

developed. UDF for prefix matching has been used

for finding nearest location on the basis of match

count. Match count can be understand as the

number of character matched between geohash code

of current location and Geohash code from data file.

Some specified fields from each type like library,

school etc having highest prefix match is returned as

output.

REFERENCES
[1] Kisung Lee, Raghu k Ganti, Mudhakar

Shrivasta, Ling Liu. “Efficient Spatial Query

Processing for Big Data” 978-1-4503-3131-

9/14/11/2014 ACM.

[2]. ‘’Basics of Geohash” [online]

en.wikipedia.org/wiki/Geohash

[3]. “Finding Nearest Location with Open Box

Query using Geohashing andMapReduce”

[online]

www.gdeepak.com/thesisme/Finding Neare

st Location

[4]. A. Akdogan, U. Demiryurek, F. Banaei-

Kashani, and C. Shahabi. “Voronoi-Based

Geospatial Query Processing with

MapReduce”. In CLOUDCOM '10, 2010.

[5]. Afsin, Akdogan, Ugur Demiryurek, Farnoush

Banaei Kashani, Cyrus Shahabi “Voronoi-

Based Geospatial Query Processing with

MapReduce” CloudCom Pg. 9-16, 2010.

[6]. W. Lu, Y. Shen, S. Chen, and B. C. Ooi.”

Efficient Processing of K Nearest Neighbor

Joins Using MapReduce” Proc. VLDB Endow,

5(10), June 2012.

[7] J.M. Patel “Building a Scalable Geospatial

Database System” In SIGMOD, 1997

[8]. “Geohash and its format” [online]

http://geohash.org/site/tips.html

[9] “What is hadoop” [online]

http://hadoop.apache.org/

[10]. “Hadoop fundamentals” [online]

http://bigdatauniversity.com/courses/

[11]. C. Zhang, F. Li, and J. Jestes. “Efficient

Parallel kNN Joins for Large Data in

MapReduce”. In EDBT’12, 2012.

[12.] S. Zhang, J. Han, Z. Liu, K. Wang, and S. Feng.

“Spatial Queries Evaluation with

MapReduce” In GCC '09, 2009.

[13]. “W3C recommendation: Rdf primer”

http://www.w3.org/TR/rdf-primer/

[14] Der-Tsai Lee “On -Nearest Neighbor

Voronoi Diagrams in the Plane” IEEE

Trans. Computers, 1982.

[15]. “Basi of voronoi diagram”[online]

en.wikipedia.org/wiki/Voronoi_diagram

[16]. “Basic of pig”

http://developer.yahoo.com/hadoop/tutori

al/.

[17]. Kai Wang, Jizhong Han, Bibo Tu, Jiao Dai,

Wei Zhou, “Accelerating Spatial Data

Processing with MapReduce” 1521-9097/10

2010 IEEE DOI 10.1109/ICPADS.2010.76

[18] Y onggang Wang, “Research and

Implementation on Spatial Data Storage and

Operation Based on Hadoop Platform” 978-

1-4244-8515-4/10 20 10 IEEE

[19] Ian De Felipe, “Keyword Search on Spatial

Databases” supported in part by NSF grants

CNS-0320956, CNS-0220562, HRD-0317692,

and IIS-0534530

[20] Ariel Cary et.al, “Experiences on Processing

Spatial Data with MapReduce” supported in

part by NSF grants IIS-0837716, CNS-

0821345, HRD-0833093, EIA-0220562, IIS-

0811922, IIP-0829576 and IIS-0534530, and

equipment support by Google and IBM

