Vol.3., Issue.3, 2015

REVIEW ARTICLE

ISSN: 2321-7758

TRANSMISSION SYSTEM DESIGN :SYNCHRONIZATION OF ELECTRICAL & CIVIL WORK

JAYA SHARMA¹, VIPIN KUMAR CHOUHAN², Dr. NAVITA KHATRI2, NAMRA JOSHI³

¹Assistant Professor, Department of Electrical & Electronics Engineering Shri Vaishnav Institute of Technology& Science, Indore, India

²Junior Engineer-I C& W, Rajasthan Rajya Vidyut Prasaran Nigam Limited

³M.Tech III Sem, Power System Engineering, Department of Electrical Engineering, Mewar University, Chittorgarh,

India

Article Received:12/05/2015

Article Revised on:19/05/2015

Article Accepted on:25/05/2015

ABSTRACT

Today the number of Projects per year has increased to meet the raised demand of the users. Synchronization between two Things or Branches is basic need for the project to complete without any major problem and in given space of time. As Electricity plays vital role in development of industries and running the project, consistent power supply is must. The paper describes meaning of Synchronization and its implementation at different phases of the substation & Transmission line projects & Case studies in transmission utility. The paper also includes different points of interfacing and co-ordination between Civil & Electrical Engineering in Substation and Transmission line through which project can be completed successfully.

Keywords-Transmission system design, interfacing, coordination between electrical and civil aspects

©KY Publications

INTRODUCTION

Earlier there were only three basic needs of the human beings Air, Water & Food. But later on Shelter and clothing were added. After Industrial revolution in 19th century, Technology has raised the demand of the Humans. And to fulfill that demand various industries have established and many new projects were started, due to which nine new needs have added to the list and they are Power, Security, Adventure, Freedom, Exchange, Expansion, Acceptance, community & expression. Amongst this Power is the most demanding need of the humans. Power is utilized at each and every aspects of the life. Thus transmitting quality power supply is very essential for transmission utility. Today the Number of projects per year has risen. So for any new project maintaining the quality and completing it within specified time limit are the key challenges for Engineers. This will lead us to make everything synchronized so as to achieve our target.

Synchronize briefly describe as make two or more things happen together, Synchronization is a time keeping which requires the coordination of events to operate a system in unison. In transmission utility synchronization between Civil & Electrical engineering is the key point. Any desynchronization will ultimately lead to delay in project and thus wasting our valuable time. Synchronization includes proper interfacing & coordination between these two branches of engineering.

COORDINATION AT DIFFERENT STAGES OF PROJECTS

Decision Making

At this level decision for necessity of the project, location & funding for the project etc. are taken. At this stage Electrical aspect are modality, location of the Incoming & Outgoing lines, availability of the required land, future extension etc. while Civil aspect are type of soil, cutting-filling area, type of foundation, High Flood Level etc.

Synchronization at this level will help the Project team to have clear vision for the project. It will also help Finance team to make the budget of the project.

Desynchronization at this level will lead to mismanagement of the project schedule; higher cost of the project then budgeted, and requires higher time for the completion of the project then actual.

Planing

In planning phase the layout of substation, route of transmission line, Bill of quantity for substation, Illumination, Earthing & Protection BOQ are being prepared. At this level maximum Interfacing is required. Arrangement for the location of control room, transformer bay, line bay, Cable Trench Route, Phase clearance and ground clearance for the equipments & Gantry tower etc. are decided and an Electrical layout of substation is prepared. At the same time preparation of each & every equipment foundation drawings keeping in view the phase and ground clearance, Control Room foundation & structural drawings, Rain water drain drawing, foundation layout etc. are being prepared for the same substation.

Proper Synchronization will lead to better understanding of the project; it also helps for better execution & thus saves project time and cost. Any desynchronization at this level will create havoc in Execution. Mismatching of the Electrical & civil drawings will ultimately delay the execution of the project and affects the cost and time very badly.

Execution

Execution of foundations, construction of control room building, Road, cable trench etc. work will fall under Civil engineering & Erection of equipment support structures on foundations, Erection of Equipments, providing panels in Control room & monitoring them, maintaining the functionality of the substation etc. will fall under the Electrical engineering side.

Proper co-ordination will lead to easy erection of equipment structures & equipments, Panels in control room. Proper Synchronization will ultimately solve the purpose of the project with proper time & cost management. Desynchronization will affect the project cost very seriously; it will also increase the project time. Problems in erection of equipments & panels will create the chaotic condition. And the project will fail in its purpose.

Desynchronization will affect the project cost very seriously; it will also increase the project time. Problems in erection of equipments & panels will create the chaotic condition and project will fail in its purpose.

CASE STUDIES

Case Detail: 1

In one of the substation the gantry foundations were wrongly orientated.

• **Corrective Measures**: Those foundations were dismantled and new foundations were casted.

• Weak Point Analysis : Substation layout & foundation layout must be checked jointly by electrical & civil engineers before execution to avoid such kind of error.

Case Detail :2

Error was found in casting of bolts of tandem isolators. Foundation bolts of 20 mm dia. were used initially, but the bolt required is of 25 mm dia. As per tandem Isolator equipment drawings.

Corrective Measures: New foundations were constructed afterward with 25 mm dia. Bolts and isolators were erected successfully on them. **Weak Point Analysis:** Correct Foundation bolts details for particular equipment in substation shall be available with the civil engineer who is preparing the drawings. This is possible only with proper interfacing with Electrical Engineer who is approving the related equipment structure drawings.

Case Detail: 3

Earlier Earthings grid layouts were not sent to the site to the site. So Cable trenches & roads had to be broken for the earthing rods to pass through them.

Corrective Measures: Earthing grid layout is prepared and locations where earthing rod will cross the trenches & roads are marked and during execution suitable pipes are provided in roads & trenches so that will pass through the pipe without breaking any structure, roads or trench.

Weak Point Analysis: Civil works starts before the earthing grid works in the substation and due to lack of interfacing, many problems & complications arose. Now earthing grid layout is prepared & made

available to the site Engineer well before the civil execution work.

SYNCHRONIZATION THROUGH INTERFACING & CO-ORDINATION

On the basis of Project Case Studies. For success of any project it must have proper interface and coordination between Electrical & Civil Aspects in Substation Design at various stages as under:

1	Area of substation	Class of Substation,Nos. of bay	Level of yard, HFL,contou map,coordinates and
2	Soil investigation	required & future Exrension Control Room,Transfer and other heavy weight equipments location Layout	for design of contro room,foundations etc. Loading on foundations
3	Equipments & Structures	Section Loading data of respective equipments Connection of gantry & beam,If base plan of gantry is	Plinth height Foundation design of gantry & equipment structure
		rectangular Earthing requirements	Foundation layout Necessary provision fo construction & design Architectural drawings, type of
		Nos.,Loading and Size of Panels Type,nos. and loading of batteries	painting, flooring, size c doors an design of floor Acid resistance paints, Exhaus fan etc. in Battery room
4	Control room Building	Arrangement of Panels and cutout details for cables of panels All type of cable entry in control room	Opening in floor for cabl entry Size of cable trench
		Cable laying required	accordingly cable trench/tra
		underground or overhead Cable route diagram,Nos. of	is to b designed Decide size and interna connection botween cable transhes
		underground or overhead	designed Decide size and interna

	structure design		Connection of beam with
		Height of Upper & Lower bus	column at requires height
		Maintanance Requirement	Arrangement of Step bolt
			Appropriate hole for earthing
			in diagonally placed in the
		Earthing Requirements	structure drawing
		Loading Data of suspended	
		Equipment (Pilot	
		insulator,Wave trap)	Peak Height of Structure
			Input data of drainage waste
6	Drainage system		water
	0,		and slope of drain towards
		Layout	outlet
7	Dein Mister Dusin		Route & slope of rain water
7	Rain Water Drain	Lavout	and peripheral drain towards
		Layout Ground Clearance, Phase to	harvesting system and outlet
		phase Clearance and phase to	Dimension (Height,Width) of
		earth clearance	Structure
		Mounting arrangement of	
_	Equipment structure	respective equipment	Top Plan of structure
8	design		Necessary provision for
		Type of Structure whether it is	construction
		pipe or lattice	and design
			Cleat arrangement for
		Earthing Requirements	Earthing strip
			Entry of Cables in room
			Cable Trench layout and slope
			of cable trench
		Cable Route diagram	Decide whether and how two
			sections of trench
			crosses,junction for hume pipe or other arrangement
9	Cable Trench	Details of control cables, Power	Arrangement of tray in the
5	cable french	cables and fiber optical cables	cable trench
			Road Crossing Cable Trench
		Loading data of heaviest	design (big bang
		equipment for transportation	crossing/Hume pipe)
		Specify whether fire sealing	
		arrangement to be provided	Necessary slope to be
		and its location	provided in cable trench
		Specify whether fire sealing	Necessary provision for
		arrangement to be provided	construction
	Transformer	and its location	and design
10	Transformer &	Location of marshalling box	Design of Plinth
	Reactor	Quantity of oil in transformer	
		and reactor	Design of oil sump
		Loading of transformer &	Height of fire protecting wall

		reactor on plinth	as per standards
		Requirement of Oil Sump Location of lightning mast	Height of Plinth,location of fire protection wall & design of rail cum road
11	Lightning mast	Height of ligting mast Requirement of platform of fixing arrangement of lightin fixtures Dimensions of spike	ng Design of ligtning mast structure,its foundation with foundation bolt
		Maintenance requirement	Arrangement of ladder/Step Bolt Holes required for strip and
		Earthing Requirement Location of Earthir	
12	Water Supply	pit,requirement of water earth pit	in Layout for water supply line for earthing
	Interface Between Civi	I & Electrical in transmission Lin	e
1	R.O.W.	Voltage Class	Tower design particular location (normal,narrow base,monopole)
		Nos. of Circuit	No. of Cross arm Type of tower (suspension
		Type of Tower angle	/tension)
		Details of conductor	Loading of tower
		sag tension calculations	Preparation of loading tree
2	Tower Structure	Details of earth wire	Peak height of tower
-	Design	Ground clearance	Height of bottom cross arm
		Other Electrical clearance	Design of crossarms
		Hardware data	Connection arrangement with tower
		Maintenance Requirement	Platform,Ladder and step bolt arrangement
		Provision of ACD & Other tower accessories	Provision of appropriate size of holes
		Length of insulator string	Distance between two cross arm
3	Extension	Earthing Requirement	Provision of appropriate size of holes at leg member of earthing
		Route profile of line	Height of extension required
		Loading data of normal/existing extension	Design proposed extension of tower
		Structural drawing of	Arrangement of members
		existing normal/extension	Existing stub and leg member detail for connection

4	Foundation	Route map,check survey report,profile	Loading of tower (normal/broken wire condition)		
-			Soil data of Tower Location		
			Stub details and drawing		
		Upgradation of loading			
F	Any Other Specific	capacity	Special Tower Design		
5	Requirement	River Crossing Tower			
		location	Special Tower foundation Design		
CONCLUSION [9]. www.cercind.gov.in					
Coordination between Electrical & Civil Engineering [10]. www.rvpn.co.in					

Coordination aspects in transmission System design has been discussed in this paper. A systematic procedure has been presented for carrying out Installation & Commissioning of Transmission System in any Site Conditions. This can be conclude that Synchronism is must in any project irrespective of project type and its size. It will ultimately lead to save time and cost which are the crucial parts of the project. Errors in the project can be minimized with proper interfacing and coordination and thus problems can also be minimized. Thus post project cost can be minimized & post project maintenance is also reduced. be minimized. Any alteration or changes can be prevented if a project meet its requirement and fulfill its purpose. Thus post project cost can also be saved.

REFERENCES

- P.S. Satnam, P.V. Gupta, "Substation Design & Equipment,"Dhanpat Rai Publishing Company (P) Ltd.
- [2]. Construction Manual for Transmission Lines, Rajasthan Rajya Vidyut Ptasaran Nigam, 2008, pp. 43-47.
- [3]. S.Rao, "Testing, Commissioning, Operation and Maintenance of Electrical Equipment", Khanna Publishers
- J. Bialek, "Tracing the flow of electricity," IEE Proceedings Generation, Transmission and Distribution, Vol. 143 No 5, pp. 313-20, March 1996.
- [5]. M.V.Deshpande. "Electrical Power System Design" TMH Publication,2006,pp.63-67.
- [6]. J.Duncan Glover, Mulukutla S. Sarma, Thomas J. Overbye, "Power System Analysis & Design," Cengage Learning, 2012, pp. 169-173.
- [7]. www.powermin.nic.in
- [8]. www.optcl.co.in