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Abstract

Artificial intelligence (Al) driven automation revolutionizes nanomaterial
discovery by integrating high-throughput virtual screening, self-driving
laboratories, and machine learning surrogates for simulations. This review
examines opportunities such as GPU-accelerated docking of billions of
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compounds, Al-guided synthesis of stable solid-state electrolytes, and

autonomous optimization of nanoparticles for drug delivery, achieving 100x
speedups over traditional methods. Challenges include data scarcity, model
interpretability, accuracy in disordered structures, scalability limits, and
ethical concerns in nanotoxicity assessment. Methodologies span classical ML
to deep graph neural networks (GNNs), with case studies from 2D
ferromagnets and nanoporous materials. Hybrid Al-robotics frameworks
promise to bridge experimental gaps, accelerating sustainable materials for
energy and biomedicine by 2026.

Keywords: Al automation, self-driving labs, nanomaterial discovery, high-
throughput screening, nanotoxicity ethics.

Introduction Opportunities abound: self-driving labs

Nanomaterial discovery traditionally like LUMI synthesize 1,700+ lipid nanoparticles

involves trial-and-error synthesis amid vast iteratively, ldlscovercling I:jo‘fl mechanisms
design spaces, limited by labor-intensive aut(.)n(.Jmous y. In .rug ¢ 1'Very, TuNajAI
characterization. Al-driven automation optimizes  nanoparticle  recipes,  boosting
addresses this through virtual high-throughput encapsulation by 42.9% for leukemia therapies.
laboratories that simulate thousands of For 2D ferromagnets, DFT-MC screening

identifies 26 candidates with Tc >400 K from 786.

candidates daily on supercomputers, leveraging
Solid-state electrolytes see 32 million candidates

databases like Materials Project for stability

filtering. GPU accelerations yield 350x speedups screened, yielding 500K stables and 18 syntheses.

in docking over a billion compounds in 24 hours,
while tools like CHARMM-GUI automate MD
model building.

Challenges persist: accuracy gaps in
alloys, data scarcity for rare properties, false
positives in protein-nanoparticle screening, and
"safe-by-design" nanotoxicity needs. By January
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2026, agentic Al transitions from copilots to lab-
pilots, integrating robotics for closed-loop
review

discovery. This synthesizes

methodologies, case studies, hurdles, and

pathways forward [1-4].
Methodology

Al automation pipelines encompass
structure generation, property prediction, active
learning, and robotic synthesis-validation loops.

Core Components

e Structure Generation: Hypothetical
enumerators or ViNAS-Pro create
libraries; GNNs like GNoME predict

2.2M stable crystals.

e Surrogate Modeling: Hierarchical from
cheap proxies (CML: RF, SVM) to DFT-
validated DML (GNNs, VAEs). Train on
Materials Project data.

e High-Throughput Screening: Cloud
HPC filters by stability/toxicity; ML

surrogates predict
bandgaps/adsorption.
e Active Learning: Uncertainty-driven

DFT queries refine models, boosting hit
rates 3-33%.

¢ Robotic Integration: nanoHUB simulates

protein-NP interactions; self-driving

labs execute synthesis-characterization.
Algorithmic Frameworks

Classical ML (RF for CO2 capture, GPR for Curie
temps) handles small datasets interpretably.
Deep ML scales: GNNs for quaternaries,
transformers for dynamics.

Framework Automation Level

Key Tools

Speedup

Virtual Screening | Simulation-only

CHARMM-GUI, ViNAS-Pro 350x

Closed-Loop Al ML + Proxy Sims

GNoOME, Active Learning 100x

Self-Driving Labs | Al + Robotics

LUMI, TuNa-AI

70% cycle reduction

Workflows deploy on GPUs/clusters, with
hyperparameter
methods [1-3,5].

optimization via Bayesian

Discussion

Al automation yields transformative
opportunities tempered by persistent challenges.

Opportunities in Acceleration

e Scalability: DML
identifying top nanoporous candidates

screens billions,

for methane/CO2 storage.

e Novelty Discovery: Autonomous labs
uncover emergent mechanisms, e.g.,
lipid NPs outperforming hypotheses.

e Optimization: TuNa-Al cuts

carcinogenic excipients 75% while

enhancing biodistribution.

e Interdisciplinary =~ Reach: From 2D
magnets (Tc>400K) to electrolytes (18
new syntheses).

In 2026, agentic Al plans multi-step workflows,
with industry (BASF, Dow) patenting Al-process
control.

Case Studies

e 2D Ferromagnets: DFT-MC + ML from
786 yields 26 high-Tc, experimentally
validated.

e Nanoparticles for Delivery: Al-robotics

engineers venetoclax NPs, halting
leukemia growth superiorly.
e Electrolytes: 32M  screened to 500K

stables via cloud Al
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Key Challenges
e Data and Accuracy: Scarcity for
disordered alloys; active learning

essential.

e Interpretability: Black-box DML risks

untrusted predictions; hybrids with

e Scalability: Expensive DFT limits to top
candidates, missing optima; surrogates
mitigate.

e Integration Gaps: Poor protein prep
inflates nanoHUB

bridges sim-experiment.

false positives;

CML aid. e Ethics/Safety: HTS flags nanotoxicity
early, but validation lags demand safe-
by-design.

Challenge Impact Mitigation
Data Scarcity Overfitting rare events Active learning loops
Interpretability Adoption barriers SHAP + physics-informed NNs
Scalability Compute costs Multi-fidelity modeling
Validation Gaps False discoveries Robotic closed-loops
Nanotoxicity Health risks Early HTS screening
Industry shifts to proprietary Al amid regulatory Engineering, 9(18), 6253-

pushes for explainable models [1,2,6].
Conclusion

Al-driven
unprecedented nanomaterial discovery speeds,

automation unlocks
from virtual labs screening billions to self-
driving platforms synthesizing breakthroughs.
medicine, and

Opportunities in energy,

sustainability =~ outweigh challenges when
addressed via hybrids, active learning, and
ethical frameworks. By 2027, fully autonomous
discovery pipelines will dominate, reducing
waste and accelerating green tech. Researchers
must prioritize data sharing, interpretability, and
safety to this
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