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Abstract

Nanoscale materials Modeling evolves beyond atomic-scale simulations
toward multiscale, Al-driven paradigms that integrate quantum effects,
machine learning surrogates, and real-time experimental feedback. High-
throughput virtual laboratories screen billions of nanostructures, predicting
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properties like Curie temperatures above 400 K in 2D ferromagnets from 786

candidates. This review explores transitions from classical molecular
dynamics (MD) and density functional theory (DFT) to graph neural
networks (GNNs), active learning loops, and self-driving laboratories.
Methodologies span CHARMM-GUI automation, ViNAS-Pro libraries, and
nanoHUB protein-nanoparticle simulations. Discussions address challenges
in disordered alloys, data scarcity, and nanotoxicity, highlighting
opportunities in sustainable energy materials and biomedicine by 2026.

Keywords: multiscale modeling, Al-driven nanomaterials, high-throughput
screening, graph neural networks, self-driving labs.

Introduction and autonomous workflows. GPU-accelerated

Traditional nanoscale modeling focuses docking  achieves 350x speedups, screening

on atomistic representations via DFT for billions of compounds daily, while platforms like

electronic properties and MD for dynamics, Mat.e11j1als Pro]e(it.fuel hierarchical filtering for
limited by computational cost across vast design stability and toxicity.

spaces. Emerging paradigms transcend this Key shifts include Al surrogates trained
"beyond the atom" mindset, incorporating on DFT datasets predicting bandgaps with 11
mesoscale effects, machine learning acceleration, meV/atom accuracy, as in GNoME's discovery
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of 2.2 million stable crystals. Case studies
demonstrate impact: DFT-MC identifies 26 high-
Tc 2D ferromagnets; cloud HPC screens 32
million electrolytes, yielding 18 syntheses. Tools
like CHARMM-GUI automate all-atom MD
models with solvation and force fields.

By January 2026, paradigms emphasize
hybrid quantum-classical simulations, active
learning for rare events, and ethical "safe-by-
design" screening amid growing nanomaterial
markets. This review synthesizes methodologies,
benchmarks classical vs. deep learning, and
charts futures in quantum nanotechnology and
bio-nano interfaces [1-4].

Methodology

Emerging modeling pipelines follow
generation — proxy screening — refinement —
validation loops, blending physics-based and
data-driven methods.

Structure Generation and Databases

Hypothetical enumerators and ViNAS-
Pro generate libraries; databases like Materials
Project provide DFT-relaxed structures. Filters
apply stability (hull distance <10 meV/atom),
toxicity heuristics.

Al-Driven Acceleration

ML: Random forests filter
nanoporous  methane/CO2  uptake
(R?=0.85); GPR quantifies uncertainties.

e (lassical

e Deep Learning: GNNs (crystal graphs)
predict energies for quaternaries; VAEs
generate bioactivity profiles.

e Active Learning: Bayesian optimization
queries DFT for uncertain predictions,
boosting hit rates 10x.

nanoHUB tools simulate mechanics; self-driving
labs close loops with robotics [1,4].

Paradigm Scale Accuracy Throughput
Classical MD/DFT Atomistic Reference 103/ day
ML Surrogates Multi-scale 5% 10°/day
GNN + Active Learning Hierarchical +1 meV/atom 102/ day
Discussion e Solid Electrolytes: Screens 32M
Beyond-atomic  paradigms  unlock candidates to 500K stables, synthesizing

discoveries while confronting fundamental

limits.
Breakthrough Case Studies

e 2D Ferromagnets: High-throughput
DFT-MC  screens 786  materials,
identifying 26 with Tc>400 K, validated
experimentally.

e Nanoporous Materials: Balances dataset
compute,
storage via multi-fidelity

size with
CH,/CO,
GNNs.

optimizing

18 novel via cloud Al

e Drug Delivery NPs: nanoHUB MD + Al

predicts  interactions,  engineering

venetoclax NPs with 42% better efficacy.

GNOME exemplifies scaling: 2.2M new crystals
from 10° training structures.

Emerging Techniques

e  Quantum-Enhanced: Variational
quantum eigensolvers for correlated
oxides beyond DFT.

e Mesoscale Integration: Phase-field + MD
hybrids model grain boundaries in
alloys.
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e Multimodal AI: Fuses spectra, images,
structures for inverse design.

e Autonomous Labs: LUMI iterates 1,700
NPs,
hypothesized optima.

lipid non-

discovering

Persistent Challenges

e Disordered Systems: Alloys defy site
predictions; active learning mitigates but
data-scarce.

e Rare Events: High-Tc magnets require
targeted sampling.

e Validation Gaps: Virtual false positives
from protein prep errors.

e Scalability: DFT
candidates,

bottlenecks top
risking missed global
optima.

o Ethics: Nanotoxicity screening flags
hazards early, but experimental lags

demand safe-by-design.

Challenge Atomic Paradigm Beyond-Atom Solution
Complexity DFT failure in alloys GNN + physics-informed
Data Scarcity Manual curation Active loops + transfer learning
Interpretability Black-box risks Hybrid CML-DML
Industry (BASF, Dow) adopts for energy [2]. Vanduyfthuys, R., et al. (2022). High-
materials; academia pushes quantum-nano throughput screening of nanoporous

frontiers [1,2,4,5].
Conclusion

Beyond-atomic paradigms redefine

nanoscale modeling through Al-multiscale

synergies, accelerating  discoveries from
ferromagnets to therapeutics. High-throughput
workflows screen billions, self-driving labs
ethical

frameworks ensure safety. By 2027, quantum-AlI

synthesize =~ autonomously,  and
hybrids will dominate, enabling sustainable

nanomaterials. Researchers must invest in

shared datasets, robust uncertainties, and
interdisciplinary validation to transcend current

horizons.
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