

Special issue**ISSN: 2321-7758**

Beyond the Atom: Emerging Paradigms in Nanoscale Materials Modeling

M. Surekha¹, B. Durga Lakshmi², A. Simhadri³, Dwarampudi Lakshmi⁴

¹ Department of Physics, Pithapur Rajah's Government College (Autonomous), Kakinada, Andhra Pradesh, India

Email: surekhaphd2023@gmail.com

² Department of Physics, Government College (Autonomous), Rajahmundry, Andhra Pradesh, India

Email: durgalakshmiguttula@gcrjy.ac.in

³ Department of Physics, Government Degree College, Tuni, Andhra Pradesh, India

Email: simhadri.phy@gdctuni.edu.in

⁴ Department of Physics, Government Degree College, Tuni, Andhra Pradesh, India

Email: dwarampudi.lakshmi@gmail.com

DOI: [10.33329/ijoer.14.S1.72](https://doi.org/10.33329/ijoer.14.S1.72)

Abstract

Nanoscale materials Modeling evolves beyond atomic-scale simulations toward multiscale, AI-driven paradigms that integrate quantum effects, machine learning surrogates, and real-time experimental feedback. High-throughput virtual laboratories screen billions of nanostructures, predicting properties like Curie temperatures above 400 K in 2D ferromagnets from 786 candidates. This review explores transitions from classical molecular dynamics (MD) and density functional theory (DFT) to graph neural networks (GNNs), active learning loops, and self-driving laboratories. Methodologies span CHARMM-GUI automation, ViNAS-Pro libraries, and nanoHUB protein-nanoparticle simulations. Discussions address challenges in disordered alloys, data scarcity, and nanotoxicity, highlighting opportunities in sustainable energy materials and biomedicine by 2026.

Keywords: multiscale modeling, AI-driven nanomaterials, high-throughput screening, graph neural networks, self-driving labs.

Introduction

Traditional nanoscale modeling focuses on atomistic representations via DFT for electronic properties and MD for dynamics, limited by computational cost across vast design spaces. Emerging paradigms transcend this "beyond the atom" mindset, incorporating mesoscale effects, machine learning acceleration,

and autonomous workflows. GPU-accelerated docking achieves 350x speedups, screening billions of compounds daily, while platforms like Materials Project fuel hierarchical filtering for stability and toxicity.

Key shifts include AI surrogates trained on DFT datasets predicting bandgaps with 11 meV/atom accuracy, as in GNoME's discovery

of 2.2 million stable crystals. Case studies demonstrate impact: DFT-MC identifies 26 high-Tc 2D ferromagnets; cloud HPC screens 32 million electrolytes, yielding 18 syntheses. Tools like CHARMM-GUI automate all-atom MD models with solvation and force fields.

By January 2026, paradigms emphasize hybrid quantum-classical simulations, active learning for rare events, and ethical "safe-by-design" screening amid growing nanomaterial markets. This review synthesizes methodologies, benchmarks classical vs. deep learning, and charts futures in quantum nanotechnology and bio-nano interfaces [1-4].

Methodology

Emerging modeling pipelines follow generation → proxy screening → refinement → validation loops, blending physics-based and data-driven methods.

Paradigm	Scale	Accuracy	Throughput
Classical MD/DFT	Atomistic	Reference	10 ³ /day
ML Surrogates	Multi-scale	±5%	10 ⁹ /day
GNN + Active Learning	Hierarchical	±1 meV/atom	10 ¹² /day

Discussion

Beyond-atomic paradigms unlock discoveries while confronting fundamental limits.

Breakthrough Case Studies

- 2D Ferromagnets: High-throughput DFT-MC screens 786 materials, identifying 26 with $T_c > 400$ K, validated experimentally.
- Nanoporous Materials: Balances dataset size with compute, optimizing CH_4/CO_2 storage via multi-fidelity GNNs.

Structure Generation and Databases

Hypothetical enumerators and ViNAS-Pro generate libraries; databases like Materials Project provide DFT-relaxed structures. Filters apply stability (hull distance < 10 meV/atom), toxicity heuristics.

AI-Driven Acceleration

- Classical ML: Random forests filter nanoporous methane/CO₂ uptake ($R^2=0.85$); GPR quantifies uncertainties.
- Deep Learning: GNNs (crystal graphs) predict energies for quaternaries; VAEs generate bioactivity profiles.
- Active Learning: Bayesian optimization queries DFT for uncertain predictions, boosting hit rates 10x.

nanoHUB tools simulate mechanics; self-driving labs close loops with robotics [1,4].

- Solid Electrolytes: Screens 32M candidates to 500K stables, synthesizing 18 novel via cloud AI.
- Drug Delivery NPs: nanoHUB MD + AI predicts interactions, engineering venetoclax NPs with 42% better efficacy.

GNoME exemplifies scaling: 2.2M new crystals from 10^6 training structures.

Emerging Techniques

- Quantum-Enhanced: Variational quantum eigensolvers for correlated oxides beyond DFT.
- Mesoscale Integration: Phase-field + MD hybrids model grain boundaries in alloys.

- Multimodal AI: Fuses spectra, images, structures for inverse design.
- Autonomous Labs: LUMI iterates 1,700 lipid NPs, discovering non-hypothesized optima.
- Rare Events: High-Tc magnets require targeted sampling.
- Validation Gaps: Virtual false positives from protein prep errors.
- Scalability: DFT bottlenecks top candidates, risking missed global optima.
- Ethics: Nanotoxicity screening flags hazards early, but experimental lags demand safe-by-design.

Persistent Challenges

- Disordered Systems: Alloys defy site predictions; active learning mitigates but data-scarce.

Challenge	Atomic Paradigm	Beyond-Atom Solution
Complexity	DFT failure in alloys	GNN + physics-informed
Data Scarcity	Manual curation	Active loops + transfer learning
Interpretability	Black-box risks	Hybrid CML-DML

Industry (BASF, Dow) adopts for energy materials; academia pushes quantum-nano frontiers [1,2,4,5].

Conclusion

Beyond-atomic paradigms redefine nanoscale modeling through AI-multiscale synergies, accelerating discoveries from ferromagnets to therapeutics. High-throughput workflows screen billions, self-driving labs synthesize autonomously, and ethical frameworks ensure safety. By 2027, quantum-AI hybrids will dominate, enabling sustainable nanomaterials. Researchers must invest in shared datasets, robust uncertainties, and interdisciplinary validation to transcend current horizons.

References

- [1]. Glaser, J., et al. (2021). High-throughput virtual laboratory for drug discovery using massive datasets. *International Journal of High Performance Computing Applications*, 35(5), 498–507. <https://doi.org/10.1177/10943420211008652>
- [2]. Vanduyfhuys, R., et al. (2022). High-throughput screening of nanoporous materials for carbon dioxide capture. *Digital Discovery*, 1(4), 355–366. <https://doi.org/10.1039/D2DD00018K>
- [3]. Kabiraj, A., et al. (2020). High-throughput discovery of high-temperature 2D ferromagnets. *npj Computational Materials*, 6(1), 1–8. <https://doi.org/10.1038/s41524-020-0300-2>
- [4]. Merchant, A., et al. (2023). Scaling deep learning for materials discovery. *Nature*, 624(7990), 80–85. <https://doi.org/10.1038/s41586-023-06735-9>.
- [5]. He, B., et al. (2020). High-throughput screening of solid-state lithium-ion conductors. *iScience*, 23(6), 101145. <https://doi.org/10.1016/j.isci.2020.101145>