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Abstract

Nanomaterials exhibit intricate behaviors arising from quantum effects,
multiscale interactions, and structural disorder, challenging traditional
simulation paradigms. Innovative approaches —spanning machine learning
force fields (MLFFs), QM/MM hybrids, and high-throughput virtual
screening —unravel this complexity, enabling prediction of properties like
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high-Tc ferromagnetism and supercapacitor performance across billions of
candidates. This review details computational pipelines from structure
generation to robotic synthesis, benchmarks transformative case studies (e.g.,
786 2D materials yielding 26 ferromagnets >400 K), addresses hurdles like
data scarcity and interpretability, and projects scalable impacts in energy
storage and biomedicine by 2030. Tools like CHARMM-GUI, ViNAS-Pro, and
GNoME exemplify 10™4x accelerations in bits-to-atoms workflows.
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Introduction

Nano-complexity stems from atomic-
scale heterogeneity: disordered alloys defy
mean-field approximations, protein coronas on
nanoparticles  evolve  dynamically, and
electrolyte interfaces demand coupled electron-
ion descriptions. Trial-and-error synthesis
navigates 10760 design spaces inefficiently,
bottlenecked by characterization. Computational
shifts pipelines:

supercomputers thousands  of

innovation to predictive
simulate
nanostructures daily, GPU docking boosts speed

350x over billions of compounds, and databases

like Materials Project enable stability filtering.
[Glaser, J. et al. (2021)].

Key advances include DFT-MC
screening 786 2D materials to uncover 26 high-Tc
ferromagnets (>400 K), validated

experimentally. Cloud HPC sifts 32 million
electrolytes to 500,000 stables, guiding 18
syntheses. CHARMM-GUI automates MD for
protein-NP coronae; nanoHUB models drug
delivery; VINAS-Pro predicts bioactivity. Soft
computing (ML, genetic algorithms, fuzzy logic)

storage. By
robotics  cuts

optimizes nanophotonics and
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cycles 70%,
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materials revolutions. This review synthesizes
methodologies, case studies, challenges, and
futures, drawing from validated workflows.

Methodology

Innovative simulations decompose nano-

complexity into iterative bits-to-atoms stages.
Generation and Hierarchical Screening

Enumerators  build libraries from
Materials Project/OQMD; ViNAS-Pro adds
bioactivity forecasts. Filters cascade classical
proxies (MOF pore volumes) to DFT electronics;
RF/GNN surrogates process
GPUs.[Wang, T. et al. (2024)]

billions on

Property Prediction and Multiscale Modeling

DFT-PBE yields bandgaps; Heisenberg
MC probes 2D magnetism. CHARMM-GUI
generates solvated MD systems; QM/MM
hybrids resolve interfaces; MLFFs accelerate
supercapacitors 1076-fold, capturing co-ion
effects.

Optimization via Active Learning

RF/SVM forecast CO2 uptake (R?=0.85);
GPR flags DFT needs. GNoME GNNs hit +1
meV/atom; VAEs inverse-design;, GAs multi-
tune. Bayesian optimization runs on cloud HPC;
LUMI labs robotically validate[Glaser, J. et al.
(2021)]

Stage Computational Scale Experimental Rate Speedup

Screening 10° candidates/day 102 syntheses/ month 10"4x [He, B. et al. (2020)]
Prediction GNN 1 meV/atom XRD/EXAFS 100x [Merchant, A. et al. (2023)]
Optimization | Active loops Trial-error 70% reduction [Bi, S. et al. (2024)]

Innovations like constant-potential MD and
polarizable ML electrodes tackle supercapacitor
charging mechanisms.

Discussion

Validated cases illuminate synergies; challenges
demand hybrids.

Case Studies

e 2D Ferromagnets: 786 screened; 26 Tc>400 K;
ML cuts compute 10x.[Kabiraj, A. et al
(2020)]

Nanoporous Storage: MOFs optimized for
CH4/CO2 via multi-fidelity.[Vanduythuys,
R. et al. (2022)]

Electrolytes: 32M—500K—18 syntheses;
MLFFs for intercalation.[He, B. et al. (2020)]

Biomed NPs: CHARMM-GUI/nanoHUB for
coronae; 42% drug boost.[Qi, R. et al. (2022)]

e Supercapacitors: QM/MM+ML reveals co-
ions missed classically.[Bi, S. et al. (2024)]

GNoME's 22M crystals scale accuracy;
ML+GA+FL
Computing Review (2025)]

shine in catalysis.[Soft
Emerging Insights

CG-MD bridges scales for NP dynamics; Nano-
QSAR flags toxicity; robotics automates.[Glaser,
J. etal. (2021)]

Challenges
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Challenge Fix Bridge
Data Scarcity Transfer learning Databases
Accuracy MLFFs/QM/MM Robotics
Interpretability SHAP+GNN Uncertainty
Disorder Physics-constrained MLFFs HTS

Ethics Toxicity screening Validation

Industry targets batteries; conferences eye 2026
quantum-nano fusions.

Conclusion

Innovative simulations demystify nano-
complexity, propelling discoveries from virtual
ferromagnets to real electrolytes. Accelerations
via MLFFs, active learning, and robotics promise
sustainable materials: faster cycles, precise
predictions, ethical designs. Shared data and
autonomy will scale impacts, transforming
energy and health by 2030.[Bi, S. et al. (2024)]
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