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Abstract

Virtual laboratories represent a transformative paradigm in nanomaterial
research, leveraging high-throughput simulations to explore immense
chemical and structural spaces efficiently. By combining density functional
theory (DFT), molecular dynamics (MD), and machine learning (ML) models,
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researchers can screen millions of hypothetical nanomaterials for targeted

properties like catalytic activity, electronic bandgaps, and mechanical
strength. This review examines the methodologies, case studies, challenges,
and future directions of virtual labs in nanomaterial discovery, highlighting
their role in bridging the gap between theory and experiment while reducing

time and cost.
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Introduction structure generators, applying filters for stability,

. . . toxicity, and performance. In nanoporous
Traditional nanomaterial discovery Y P P

relies on trialand-error  synthesis and materials, computational screening identifies top

. L. . . erformers for gas storage and catalysis amid
characterization, which is labour-intensive and p & & y

limited by the vast design space of rapidly growing structure libraries. As of 2026,

nanostructures. High-throughput  virtual integration with Al has expanded applications to

laboratories address this by automating 2D ferromagnets and solid-state electrolytes,

predicting properties like Curie temperatures

simulations across supercomputers or cloud
above 400 K [1-4].

platforms, enabling rapid property predictions
for thousands of candidates daily. For instance, Methodology
GPU-accelerated docking in drug-related

Virtual labs typically start with structure

nanomaterial screening achieves 350x speedups, . .
! & v 5P P generation or database curation, followed by

docking over a billion compounds in under 24 hierarchical simulations from cheap proxies to
accurate DFT. Tools like CHARMM-GUI

These platforms draw from databases Nanomaterial Modeler automate all-atom model

hours.

like the Materials Project or hypothetical building for MD simulations, handling periodic
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boundaries, solvation, and force field
parameterization.
High-throughput workflows employ

DFT for electronic properties, as in scanning 786
2D materials using automated Heisenberg Monte
Carlo for Curie points. ML surrogates accelerate

this: train on DFT data to predict bandgaps or
adsorption energies, then
Platforms like ViNAS-Pro generate virtual
with

screen billions.

nanomaterial  libraries predicted

bioactivities.

Table 1. Hierarchical Simulation Levels and Computational Methods in Virtual Nanomaterials

Laboratories
Simulation Level Methods Speedup Factor Example Tools
Low-fidelity Classical MD, Proxy | 10-100x LAMMPS,
models GROMACS
Mid-fidelity Semi-empirical 100-1000x Extended tight-
quantum binding
High-fidelity DFT, Hybrid Baseline VASP, Quantum
functionals ESPRESSO
Al-accelerated Graph neural 1000x+ SchNet, CGCNN
networks, Gaussian
processes

The table summarizes the hierarchical

simulation strategy employed in virtual
laboratories for nanomaterials discovery, where
different computational methods are organized
according to their accuracy, computational cost,
and throughput. This multi-level approach
allows efficient screening of vast material spaces
while reserving expensive calculations for the

most promising candidates.

Uncertainty quantification via ensemble
ML or bootstrapping ensures reliable hits for
experimental validation [5-8].

Discussion

Case studies demonstrate impact: High-
DFT-MC  identified 26 2D
ferromagnets with Tc >400 K from 786
candidates, validated against experiments. In

throughput

nanoporous materials, screenings optimize

methane storage or CO2 capture by balancing
computation with dataset size.

ML integration yields further gains; for
solid-state electrolytes, cloud HPC screened 32
million candidates, predicting 500,000 stables
and synthesizing 18 new ones. Virtual labs for
protein-nanoparticle interactions use nano HUB
tools to simulate mechanics, aiding drug delivery
designs.

Challenges persist: Accuracy gaps in
disordered structures or alloys, where shared
crystallographic sites defy simple predictions.
Scalability limits expensive simulations to top
candidates, risking missed optima. Data scarcity
for rare properties demands active learning
loops. Virtual screening pitfalls include poor
protein preparation or allosteric misses, inflating
false positives.

Ethical concerns arise in "safe-by-design"
for nanotoxicity; HIS flags hazards early, but
experimental gaps remain [9-12].
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Conclusion
Virtual  laboratories  with  high-
throughput simulations revolutionize

nanomaterial discovery, slashing discovery
through

Future

timelines from years to weeks
automated, Al-enhanced pipelines.
advances in exascale computing, foundation
models, and digital twins will democratize
access, fostering breakthroughs in energy,
medicine, and electronics.  Experimental
validation of top predictions remains essential to

close the simulation-experiment loop.
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