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Abstract 

Virtual laboratories represent a transformative paradigm in nanomaterial 

research, leveraging high-throughput simulations to explore immense 

chemical and structural spaces efficiently. By combining density functional 

theory (DFT), molecular dynamics (MD), and machine learning (ML) models, 

researchers can screen millions of hypothetical nanomaterials for targeted 

properties like catalytic activity, electronic bandgaps, and mechanical 

strength. This review examines the methodologies, case studies, challenges, 

and future directions of virtual labs in nanomaterial discovery, highlighting 

their role in bridging the gap between theory and experiment while reducing 

time and cost. 

Keywords: Virtual laboratories, High-throughput simulations, Nanomaterial 

discovery, Computational screening, Machine learning acceleration. 

Introduction 

Traditional nanomaterial discovery 

relies on trial-and-error synthesis and 

characterization, which is labour-intensive and 

limited by the vast design space of 

nanostructures. High-throughput virtual 

laboratories address this by automating 

simulations across supercomputers or cloud 

platforms, enabling rapid property predictions 

for thousands of candidates daily. For instance, 

GPU-accelerated docking in drug-related 

nanomaterial screening achieves 350x speedups, 

docking over a billion compounds in under 24 

hours. 

 These platforms draw from databases 

like the Materials Project or hypothetical 

structure generators, applying filters for stability, 

toxicity, and performance. In nanoporous 

materials, computational screening identifies top 

performers for gas storage and catalysis amid 

rapidly growing structure libraries. As of 2026, 

integration with AI has expanded applications to 

2D ferromagnets and solid-state electrolytes, 

predicting properties like Curie temperatures 

above 400 K [1-4]. 

Methodology 

 Virtual labs typically start with structure 

generation or database curation, followed by 

hierarchical simulations from cheap proxies to 

accurate DFT. Tools like CHARMM-GUI 

Nanomaterial Modeler automate all-atom model 

building for MD simulations, handling periodic 
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boundaries, solvation, and force field 

parameterization. 

 High-throughput workflows employ 

DFT for electronic properties, as in scanning 786 

2D materials using automated Heisenberg Monte 

Carlo for Curie points. ML surrogates accelerate 

this: train on DFT data to predict bandgaps or 

adsorption energies, then screen billions. 

Platforms like ViNAS-Pro generate virtual 

nanomaterial libraries with predicted 

bioactivities. 

 

Table 1. Hierarchical Simulation Levels and Computational Methods in Virtual Nanomaterials 

Laboratories 

Simulation Level Methods Speedup Factor Example Tools 

Low-fidelity Classical MD, Proxy 

models 

10-100x LAMMPS, 

GROMACS 

Mid-fidelity Semi-empirical 

quantum 

100-1000x Extended tight-

binding 

High-fidelity DFT, Hybrid 

functionals 

Baseline VASP, Quantum 

ESPRESSO 

AI-accelerated Graph neural 

networks, Gaussian 

processes 

1000x+ SchNet, CGCNN 

The table summarizes the hierarchical 

simulation strategy employed in virtual 

laboratories for nanomaterials discovery, where 

different computational methods are organized 

according to their accuracy, computational cost, 

and throughput. This multi-level approach 

allows efficient screening of vast material spaces 

while reserving expensive calculations for the 

most promising candidates. 

 Uncertainty quantification via ensemble 

ML or bootstrapping ensures reliable hits for 

experimental validation [5-8]. 

Discussion 

 Case studies demonstrate impact: High-

throughput DFT-MC identified 26 2D 

ferromagnets with Tc >400 K from 786 

candidates, validated against experiments. In 

nanoporous materials, screenings optimize 

methane storage or CO2 capture by balancing 

computation with dataset size. 

 ML integration yields further gains; for 

solid-state electrolytes, cloud HPC screened 32 

million candidates, predicting 500,000 stables 

and synthesizing 18 new ones. Virtual labs for 

protein-nanoparticle interactions use nano HUB 

tools to simulate mechanics, aiding drug delivery 

designs. 

 Challenges persist: Accuracy gaps in 

disordered structures or alloys, where shared 

crystallographic sites defy simple predictions. 

Scalability limits expensive simulations to top 

candidates, risking missed optima. Data scarcity 

for rare properties demands active learning 

loops. Virtual screening pitfalls include poor 

protein preparation or allosteric misses, inflating 

false positives. 

 Ethical concerns arise in "safe-by-design" 

for nanotoxicity; HTS flags hazards early, but 

experimental gaps remain [9-12]. 
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Conclusion 

Virtual laboratories with high-

throughput simulations revolutionize 

nanomaterial discovery, slashing discovery 

timelines from years to weeks through 

automated, AI-enhanced pipelines. Future 

advances in exascale computing, foundation 

models, and digital twins will democratize 

access, fostering breakthroughs in energy, 

medicine, and electronics. Experimental 

validation of top predictions remains essential to 

close the simulation-experiment loop. 
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