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Abstract

This review explores the transformative integration of machine learning (ML)
into Computational Fluid Dynamics (CFD), classifying approaches into data-
driven surrogates, physics-informed neural networks (PINNs), and ML-
assisted solvers that achieve 10-1000x speedups in complex flows from 2023-

INTERNATIONAL JOURNAL OF
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2026. Drawing from 100+ recent studies, it evaluates opportunities in real-

time inverse design, turbulence closure modeling, and multi-scale
simulations alongside critical hurdles such as physical interpretability,
extrapolation limits, and high-fidelity training data needs. Key applications
span aerodynamics, multiphase reactors, and climate modeling, with hybrid
frameworks poised to redefine industrial CFD workflows. Future directions
emphasize foundation models and uncertainty quantification for robust
deployment.
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Introduction this shift, reducing simulation times from days to

. . . . seconds while preserving conservation laws via
Traditional CFD relies on discretized p &

Navier-Stokes solutions, incurring prohibitive differentiable programming [1].

costs for high-Reynolds, unsteady flows where
grid resolutions exceed billions of cells. Machine
learning intervenes by learning mappings from
low-fidelity data to high-fidelity predictions,
enabling neural operators that generalize across
geometries and Reynolds numbers. From 2021-
2026 surges, Fourier Neural Operators (FNOs)
and Graph Neural Networks (GNNs) exemplify

This article critically assesses these
synergies, building on prior multiphase and
biotech CFD reviews to highlight domain-
agnostic opportunities and pitfalls. Market
analyses project ML-CFD hybrids driving 15-
20% of engineering simulations by 2030, fueled
by GPU advancements and open datasets [2].

Methodology
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A systematic review targeted arXiv,
Scopus, and Nature-indexed journals (2023-
2026), screening 200+ papers for quantitative
benchmarks: speedup factors (>10x), error norms
(L2 <5%), and generalization tests (unseen Re,
geometries). Core 40 studies classified per 's
taxonomy —Data-driven  (e.g, CNNs on
snapshots), Physics-Informed (PINNs enforcing
PDE residuals)) ML-Numerical
learning in finite-volume loops) [3].

(operator

Performance extracted via meta-
analysis: training costs (GPU-hours), inference
latency, and ablation on physics losses. Industrial
validations prioritized (e.g., NASA airfoils,

reactor mixing), cross-referenced with GitHub

repos like Awesome-AI4CFD for reproducibility.
Limitations quantified through failure modes
like mode collapse in GAN-based closures [4].

Discussion
Data-Driven Surrogates

ML surrogates emulate full CFD outputs
from sparse inputs, ideal for parametric studies.
Convolutional autoencoders compress flow
fields 1000:1, reconstructing transients with 2%
error on Taylor-Green vortices. In multiphase
contexts, U-Nets predict VOF interfaces 50x
faster, trained on LES snapshots for bubbly flows

[1].

Surrogate Type Speedup Error (L2) Application Example [2]
CNN Autoencoder 100x 1-3% Vortex shedding

FNO 1000x <1% Channel turbulence
GANs 200x 2-5% Shape optimization

Physics-Informed ML

PINNs embed PDE residuals into loss
functions, requiring minimal labeled data. For
incompressible flows, they solve V-u = 0and
momentum with collocation points,
outperforming baselines on Darcy flows by 20%
in irregular domains. Extended to multiphase,
VPINNs handle level-set advection, capturing

sharp interfaces without explicit tracking [5].

Challenges: Spectral bias favors low-
frequencies, mitigated by adaptive sampling. In
biotechnology, PINNs couple ASM Kkinetics,
predicting biomass gradients 15x faster than
CFD-ASM [6].

Turbulence and Closure Modeling

RANS closures (e.g., k-¢) rely on
empirical constants; ML regresses them from
DNS, reducing integral errors by 50% via
symbolic regression. LES subgrid models use
GNNs on filtered fields, dynamically adjusting
eddy viscosity for particle-laden flows [7].

Hybrid loops embed ML in OpenFOAM
via CFFl, enabling in-situ corrections during
time-stepping. Benchmarks show 12.5x FLOPs
throughput gains on large grids [8].

e Neural closures for non-Newtonian

turbulence in bioreactors.

e Operator learning for wall-modeled LES,
90% cost reduction.

e Uncertainty-aware Bayesian NNs for
robust predictions.

Inverse Design and Control

ML enables data-driven optimization,
inverting Stokes flows for optimal geometries via
differentiable
dispersion, reinforcement learning optimizes

simulators. In environmental
urban ventilation, cutting pollutant peaks 30%.
Real-time control in combustors uses LSTM
forecasters for flame stabilization [2].
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Challenges and Critiques

Data bottlenecks demand 1076-10"9
samples, often infeasible; transfer learning from
2D to 3D yields 10-20% degradation. Black-box
opacity hinders certification; physics losses

improve interpretability but stiffen training.
Extrapolation fails beyond training Re (£20%),
addressed by multi-fidelity bootstrapping.
Ethical concerns: biased datasets perpetuate
RANS inaccuracies in underrepresented regimes

[9].

Challenge Impact Mitigation Strategy [2]
Data Scarcity High training cost Multi-fidelity, synthetic DNS
Generalization Poor extrapolation Invariant architectures (FNO)
Interpretability Certification barrier Attention maps, symbolic ML
Scalability Memory explosion Operator splitting, distillation

Conclusion geometries. Sci. Rep. 2024, 14,

ML integration revolutionizes CFD by
bridging numerical rigidity with adaptive
learning, unlocking real-time capabilities for

multiphase, turbulent, and bio-fluid
applications. Despite hurdles in data and trust,
hybrid paradigms—evident in 2023-2026

literature —promise 100x efficiency gains,
contingent on open benchmarks and foundation
models. Targeted investments in uncertainty
quantification will cement ML's role in

sustainable engineering simulations.
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