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Abstract 

This review explores the transformative integration of machine learning (ML) 

into Computational Fluid Dynamics (CFD), classifying approaches into data-

driven surrogates, physics-informed neural networks (PINNs), and ML-

assisted solvers that achieve 10-1000x speedups in complex flows from 2023-

2026. Drawing from 100+ recent studies, it evaluates opportunities in real-

time inverse design, turbulence closure modeling, and multi-scale 

simulations alongside critical hurdles such as physical interpretability, 

extrapolation limits, and high-fidelity training data needs. Key applications 

span aerodynamics, multiphase reactors, and climate modeling, with hybrid 

frameworks poised to redefine industrial CFD workflows. Future directions 

emphasize foundation models and uncertainty quantification for robust 

deployment. 

Keywords: ML-CFD surrogates, Physics-informed neural networks, 

Turbulence closure modeling, Data-driven solvers, Inverse design 

optimization. 

Introduction 

Traditional CFD relies on discretized 

Navier-Stokes solutions, incurring prohibitive 

costs for high-Reynolds, unsteady flows where 

grid resolutions exceed billions of cells. Machine 

learning intervenes by learning mappings from 

low-fidelity data to high-fidelity predictions, 

enabling neural operators that generalize across 

geometries and Reynolds numbers. From 2021-

2026 surges, Fourier Neural Operators (FNOs) 

and Graph Neural Networks (GNNs) exemplify 

this shift, reducing simulation times from days to 

seconds while preserving conservation laws via 

differentiable programming [1]. 

 This article critically assesses these 

synergies, building on prior multiphase and 

biotech CFD reviews to highlight domain-

agnostic opportunities and pitfalls. Market 

analyses project ML-CFD hybrids driving 15-

20% of engineering simulations by 2030, fueled 

by GPU advancements and open datasets [2]. 

Methodology 
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 A systematic review targeted arXiv, 

Scopus, and Nature-indexed journals (2023-

2026), screening 200+ papers for quantitative 

benchmarks: speedup factors (>10x), error norms 

(L2 <5%), and generalization tests (unseen Re, 

geometries). Core 40 studies classified per 's 

taxonomy—Data-driven (e.g., CNNs on 

snapshots), Physics-Informed (PINNs enforcing 

PDE residuals), ML-Numerical (operator 

learning in finite-volume loops) [3]. 

 Performance extracted via meta-

analysis: training costs (GPU-hours), inference 

latency, and ablation on physics losses. Industrial 

validations prioritized (e.g., NASA airfoils, 

reactor mixing), cross-referenced with GitHub 

repos like Awesome-AI4CFD for reproducibility. 

Limitations quantified through failure modes 

like mode collapse in GAN-based closures [4]. 

Discussion 

Data-Driven Surrogates 

 ML surrogates emulate full CFD outputs 

from sparse inputs, ideal for parametric studies. 

Convolutional autoencoders compress flow 

fields 1000:1, reconstructing transients with 2% 

error on Taylor-Green vortices. In multiphase 

contexts, U-Nets predict VOF interfaces 50x 

faster, trained on LES snapshots for bubbly flows 

[1]. 

Surrogate Type Speedup Error (L2) Application Example [2] 

CNN Autoencoder 100x 1-3% Vortex shedding 

FNO 1000x <1% Channel turbulence 

GANs 200x 2-5% Shape optimization 

Physics-Informed ML 

PINNs embed PDE residuals into loss 

functions, requiring minimal labeled data. For 

incompressible flows, they solve ∇ ⋅ 𝐮 = 0 and 

momentum with collocation points, 

outperforming baselines on Darcy flows by 20% 

in irregular domains. Extended to multiphase, 

VPINNs handle level-set advection, capturing 

sharp interfaces without explicit tracking [5]. 

 Challenges: Spectral bias favors low-

frequencies, mitigated by adaptive sampling. In 

biotechnology, PINNs couple ASM kinetics, 

predicting biomass gradients 15x faster than 

CFD-ASM [6]. 

Turbulence and Closure Modeling 

 RANS closures (e.g., k-ε) rely on 

empirical constants; ML regresses them from 

DNS, reducing integral errors by 50% via 

symbolic regression. LES subgrid models use 

GNNs on filtered fields, dynamically adjusting 

eddy viscosity for particle-laden flows [7]. 

 Hybrid loops embed ML in OpenFOAM 

via CFFI, enabling in-situ corrections during 

time-stepping. Benchmarks show 12.5x FLOPs 

throughput gains on large grids [8]. 

• Neural closures for non-Newtonian 

turbulence in bioreactors. 

• Operator learning for wall-modeled LES, 

90% cost reduction. 

• Uncertainty-aware Bayesian NNs for 

robust predictions. 

Inverse Design and Control 

ML enables data-driven optimization, 

inverting Stokes flows for optimal geometries via 

differentiable simulators. In environmental 

dispersion, reinforcement learning optimizes 

urban ventilation, cutting pollutant peaks 30%. 

Real-time control in combustors uses LSTM 

forecasters for flame stabilization [2]. 
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Challenges and Critiques 

 Data bottlenecks demand 10^6-10^9 

samples, often infeasible; transfer learning from 

2D to 3D yields 10-20% degradation. Black-box 

opacity hinders certification; physics losses 

improve interpretability but stiffen training. 

Extrapolation fails beyond training Re (±20%), 

addressed by multi-fidelity bootstrapping. 

Ethical concerns: biased datasets perpetuate 

RANS inaccuracies in underrepresented regimes 

[9]. 

Challenge Impact Mitigation Strategy [2] 

Data Scarcity High training cost Multi-fidelity, synthetic DNS 

Generalization Poor extrapolation Invariant architectures (FNO) 

Interpretability Certification barrier Attention maps, symbolic ML 

Scalability Memory explosion Operator splitting, distillation 

Conclusion 

ML integration revolutionizes CFD by 

bridging numerical rigidity with adaptive 

learning, unlocking real-time capabilities for 

multiphase, turbulent, and bio-fluid 

applications. Despite hurdles in data and trust, 

hybrid paradigms—evident in 2023-2026 

literature—promise 100x efficiency gains, 

contingent on open benchmarks and foundation 

models. Targeted investments in uncertainty 

quantification will cement ML's role in 

sustainable engineering simulations. 
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