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interdisciplinary research.

Machine learning (ML) has revolutionized nanomaterials design by
accelerating property prediction, inverse design, and synthesis optimization,
bridging vast compositional spaces inaccessible to traditional methods. This
review explores ML methodologies, key applications in energy storage and
electronics, and emerging challenges, highlighting a paradigm shift toward
data-driven discovery. it synthesizes recent advances to guide future
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Introduction

Nanomaterials exhibit unique properties
arising from quantum confinement effects and
exceptionally high surface-to-volume ratios,
which dramatically enhance reactivity, electrical
optical
compared to their bulk counterparts. These

conductivity, and characteristics
attributes enable transformative applications
across diverse fields: in batteries, they facilitate
high-capacity electrodes with rapid charge-
discharge kinetics; in electronics, they underpin
flexible transistors and quantum dots for
displays; and in catalysis, they provide abundant
active sites for efficient chemical conversions,
such as hydrogen evolution or CO2 reduction.

Traditionally, nanomaterial design has

depended on  laborious  trial-and-error
experimentation or physics-based simulations
like density functional theory (DFT) and
(MD),

accurate, prove computationally prohibitive for

molecular dynamics which, while
navigating the vast, multidimensional parameter
spaces involving composition, morphology,
defects, and synthesis conditions—often
requiring supercomputing resources for weeks

per candidate.

Machine learning (ML) circumvents
these limitations by leveraging data-driven
models to discern intricate structure-property
relationships, enabling high-throughput virtual
screening of millions of configurations and
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precise predictions with reported accuracies
frequently surpassing 95% on benchmarks like
band gap estimation or catalytic turnover
Recent 2025
exemplify this shift: studies on "thermal switch"

frequencies. advancements
nanomaterials used neuroevolution potentials to
predict phase transitions under compression,
while ML-optimized high-entropy cathodes for
Na-ion batteries achieved 30% higher stability
via graph neural networks integrated with
robotic synthesis pipelines. This seamless fusion
of ML with autonomous experimentation
heralds a new era of accelerated discovery,
compressing development timelines from years
to months and paving the way for sustainable,
tailored nanomaterials in energy and beyond [1].

Methodology

ML workflows for nanomaterials design
commence with meticulous data curation,

aggregating

experimental

diverse  sources such as
characterizations (e.g., TEM
images, XRD spectra), high-throughput
simulations (DFT, MD), and open databases like
Materials Project or NanoMine. This step
addresses data scarcity in nanoscience by
augmenting datasets through transfer learning

from bulk materials or synthetic oversampling,

ensuring balanced representation across
compositions, sizes, and defects.

Feature engineering follows,
transforming raw inputs into informative

descriptors: atomic features include elemental

electronegativity, = valence electrons, and

coordination numbers; morphological ones
encompass particle size, aspect ratio, surface
facets, and pore distributions; while spectral
fingerprints from vibrational or electronic

spectra capture quantum effects. Advanced

techniques like Coulomb matrices, SOAP
descriptors, or Behler-Parrinello symmetry
functions  enable  rotationally  invariant

representations for complex nanostructures.

Subsequently, algorithm selection tailors
to the task. Random Forests (RF) and gradient
boosting machines (e.g., XGBoost, LightGBM)

excel in regression tasks like bandgap or
elasticity prediction, offering interpretability via
feature importance and handling non-linearities
with ensemble robustness. Deep Neural
Networks (DNNSs), particularly convolutional
variants, process imaging data for morphology
classification, while Graph Neural Networks
(GNNs)—such  as

transformer-based architectures—model atomic

message-passing  or

connectivity and hierarchical structures in alloys,
2D materials, or MOFs, achieving state-of-the-art
accuracies by propagating local environments
globally.

Validation k-fold
validation, active learning loops for uncertainty-

employs Cross-
driven refinement, and benchmarks against

physics-based  surrogates, culminating in
deployable models for inverse design or

autonomous labs [2].

e Supervised Learning:  Supervised

learning ~ dominates = nanomaterial
property prediction, training models on
labeled datasets to forecast critical
attributes like electronic band gaps,
thermal conductivity, or mechanical
strength with high fidelity. For instance,
LASSO (Least Absolute Shrinkage and
Selection Operator) feature selection
enhances Random Forest (RF) models by
identifying sparse, relevant descriptors
from high-dimensional inputs, such as
atomic radii and electronegativities,
thereby  mitigating overfitting. A
compelling example involves gold
nanostars, where LASSO-boosted RF
regressors accurately predict localized
(LSP)

bands—key for biomedical sensing-—

surface  plasmon resonance
achieving R? values exceeding 0.9 across
varied tip morphologies and sizes. This
approach not only accelerates screening
of plasmonic nanostructures but also
reveals interpretable design rules, like
tip sharpness correlating with blue-
shifted peaks, guiding targeted synthesis

for enhanced optical performance [3].
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¢ Bayesian optimization (BO)
revolutionizes nanomaterial synthesis
by efficiently tuning parameters like
temperature, precursor ratios, and pH to
maximize homogeneous yields or target
morphologies. Employing a surrogate
Gaussian Process model, BO balances
exploration of uncertain regions and
exploitation of promising ones via an
acquisition function, such as Expected
Improvement. In nanoparticle
production, BO slashes experimental
trials by 73% compared to grid search, as
demonstrated in quantum dot synthesis
where it honed ligand concentrations for
uniform size distributions below 5%
polydispersity. This sample-efficient

strategy integrates seamlessly with
robotic labs, accelerating discovery of
stable perovskites or alloy catalysts

while minimizing resource waste [1].

e Generative  Adversarial =~ Networks
(GANSs) and Variational Autoencoders
(VAEs) empower inverse design in
nanomaterials, inverting the traditional
workflow by generating novel structures
directly from desired properties like
target band gaps or catalytic activity.
GANs pit a
discriminator to produce realistic atomic

generator against a

configurations or morphologies, while
VAEs
interpolating

learn latent spaces  for

between known
nanomaterials, enabling probabilistic
sampling of unseen candidates. For
example, in 2D materials design, VAEs
conditioned on electronic properties
stable

tailored

yield MXene variants with

conductivity, slashing

computational screening by orders of

magnitude. This paradigm fosters
discovery of optimal nanostructures for
photovoltaics or

bridging

property-driven intuition with scalable

sSensors,

synthesis [4].

e Active Learning: Active learning
ML models for

nanomaterials by strategically querying

iteratively refines

high-uncertainty data points,
maximizing information gain per
Unlike

passive training on fixed datasets, it

experiment or simulation.

employs acquisition functions—like
BALD or entropy —to select candidates
where predictions are least confident,
closing knowledge gaps efficiently. In
porous  materials,  neuroevolution
potentials (e.g., via genetic algorithms
optimizing neural networks) exemplify
this: starting from sparse DFT data, the
loop evolves surrogate models for gas
adsorption or mechanical properties,
reducing total computations by 50-80%
while achieving sub-meV accuracy. This
closed-loop strategy accelerates
discovery of zeolites or MOFs for carbon
capture, integrating seamlessly with

high-throughput robotics [5].

Hybrid approaches combine ML with DFT or
MD simulations for scalable accuracy [6].

Discussion

ML excels in property prediction, with
80-95%
nanoparticle morphology and electronic traits. In

models achieving accuracy for
energy applications, graph-based ML designed
high-entropy Na-ion cathodes with superior
stability. Inverse design yields complex
structures like helical NP crystals or plasmonic

Bragg reflectors.

Application ML Technique

Key Outcome [Citation]

Battery Electrodes GNN + Bayesian Opt.

90% yield enhancement [1]

Thermal Materials Neuroevolution Potential Predicted switches via compression [7]
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Nanostar Optics RF + LASSO

LSP band prediction R? >0.9 [3]

2D Materials GANs

Inverse structure from band gaps [4]

Challenges persist: sparse, noisy nano-
datasets limit generalization, and black-box
models hinder interpretability. Solutions include
transfer learning and SHAP analysis for feature
insights. ~ Future  directions  encompass
multimodal LLMs for few-shot predictions and

automated labs.
Conclusion

Machine learning (ML) heralds a
transformative era in nanomaterials design,
delivering unprecedented efficiency and
precision that slashes discovery timelines from
years of painstaking experimentation to mere
months of data-driven iteration. By harnessing
vast datasets from simulations, experiments, and
high-throughput screening, ML models not only
predict properties with near-quantum accuracy
but also enable inverse design — crafting bespoke
nanostructures tailored for specific applications,
from ultra-stable battery cathodes to plasmonic
sensors with pinpoint optical responses. This
acceleration is vividly illustrated in recent
breakthroughs:  neuroevolution  potentials
optimizing porous frameworks for CO2 capture,
or generative models yielding high-entropy
alloys with 30% enhanced cyclability in next-

generation Na-ion batteries.

Looking ahead, integrating ever-larger,
multimodal datasets —encompassing
spectroscopic

imaging, and real-time synthesis telemetry—

fingerprints, = morphological
alongside explainable Al techniques like SHAP
analysis and attention mechanisms, will
black-box These
advancements promise interpretable design

demystify predictions.

rules, fostering trust and adoption in industrial
ML-guided
nanomaterials could revolutionize photovoltaics

pipelines. In  renewables,

with tandem perovskites exceeding 35%
efficiency, solid-state electrolytes mitigating
dendrite formation in lithium-metal anodes, and

nanostructured catalysts slashing overpotentials
for green hydrogen production. Beyond energy,
applications span biomedicine (targeted drug
delivery via smart nanoparticles), electronics

(flexible  quantum dot displays), and
environmental remediation (photocatalytic
nanofilters for microplastics).

Sustained interdisciplinary

collaboration —merging materials scientists, data
engineers, chemists, and domain experts—
remains pivotal. Coupling ML with autonomous
labs, digital twins, and ethical Al frameworks
will mitigate challenges like data bias and
sustainable, scalable
Ultimately, this
synergy positions ML as the cornerstone of a

scalability, —unlocking

nanomaterial innovations.
circular materials economy, driving humanity
toward resilient technologies that address
climate imperatives and resource scarcity with
ingenuity and foresight.
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