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Abstract 

Machine learning (ML) has revolutionized nanomaterials design by 

accelerating property prediction, inverse design, and synthesis optimization, 

bridging vast compositional spaces inaccessible to traditional methods. This 

review explores ML methodologies, key applications in energy storage and 

electronics, and emerging challenges, highlighting a paradigm shift toward 

data-driven discovery. it synthesizes recent advances to guide future 

interdisciplinary research. 

Keywords: Machine learning, nanomaterials, computational design, inverse 

design, property prediction. 

Introduction 

Nanomaterials exhibit unique properties 

arising from quantum confinement effects and 

exceptionally high surface-to-volume ratios, 

which dramatically enhance reactivity, electrical 

conductivity, and optical characteristics 

compared to their bulk counterparts. These 

attributes enable transformative applications 

across diverse fields: in batteries, they facilitate 

high-capacity electrodes with rapid charge-

discharge kinetics; in electronics, they underpin 

flexible transistors and quantum dots for 

displays; and in catalysis, they provide abundant 

active sites for efficient chemical conversions, 

such as hydrogen evolution or CO2 reduction. 

 Traditionally, nanomaterial design has 

depended on laborious trial-and-error 

experimentation or physics-based simulations 

like density functional theory (DFT) and 

molecular dynamics (MD), which, while 

accurate, prove computationally prohibitive for 

navigating the vast, multidimensional parameter 

spaces involving composition, morphology, 

defects, and synthesis conditions—often 

requiring supercomputing resources for weeks 

per candidate. 

Machine learning (ML) circumvents 

these limitations by leveraging data-driven 

models to discern intricate structure-property 

relationships, enabling high-throughput virtual 

screening of millions of configurations and 
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precise predictions with reported accuracies 

frequently surpassing 95% on benchmarks like 

band gap estimation or catalytic turnover 

frequencies. Recent 2025 advancements 

exemplify this shift: studies on "thermal switch" 

nanomaterials used neuroevolution potentials to 

predict phase transitions under compression, 

while ML-optimized high-entropy cathodes for 

Na-ion batteries achieved 30% higher stability 

via graph neural networks integrated with 

robotic synthesis pipelines. This seamless fusion 

of ML with autonomous experimentation 

heralds a new era of accelerated discovery, 

compressing development timelines from years 

to months and paving the way for sustainable, 

tailored nanomaterials in energy and beyond [1]. 

Methodology 

 ML workflows for nanomaterials design 

commence with meticulous data curation, 

aggregating diverse sources such as 

experimental characterizations (e.g., TEM 

images, XRD spectra), high-throughput 

simulations (DFT, MD), and open databases like 

Materials Project or NanoMine. This step 

addresses data scarcity in nanoscience by 

augmenting datasets through transfer learning 

from bulk materials or synthetic oversampling, 

ensuring balanced representation across 

compositions, sizes, and defects. 

 Feature engineering follows, 

transforming raw inputs into informative 

descriptors: atomic features include elemental 

electronegativity, valence electrons, and 

coordination numbers; morphological ones 

encompass particle size, aspect ratio, surface 

facets, and pore distributions; while spectral 

fingerprints from vibrational or electronic 

spectra capture quantum effects. Advanced 

techniques like Coulomb matrices, SOAP 

descriptors, or Behler-Parrinello symmetry 

functions enable rotationally invariant 

representations for complex nanostructures. 

 Subsequently, algorithm selection tailors 

to the task. Random Forests (RF) and gradient 

boosting machines (e.g., XGBoost, LightGBM) 

excel in regression tasks like bandgap or 

elasticity prediction, offering interpretability via 

feature importance and handling non-linearities 

with ensemble robustness. Deep Neural 

Networks (DNNs), particularly convolutional 

variants, process imaging data for morphology 

classification, while Graph Neural Networks 

(GNNs)—such as message-passing or 

transformer-based architectures—model atomic 

connectivity and hierarchical structures in alloys, 

2D materials, or MOFs, achieving state-of-the-art 

accuracies by propagating local environments 

globally. 

 Validation employs k-fold cross-

validation, active learning loops for uncertainty-

driven refinement, and benchmarks against 

physics-based surrogates, culminating in 

deployable models for inverse design or 

autonomous labs [2]. 

• Supervised Learning: Supervised 

learning dominates nanomaterial 

property prediction, training models on 

labeled datasets to forecast critical 

attributes like electronic band gaps, 

thermal conductivity, or mechanical 

strength with high fidelity. For instance, 

LASSO (Least Absolute Shrinkage and 

Selection Operator) feature selection 

enhances Random Forest (RF) models by 

identifying sparse, relevant descriptors 

from high-dimensional inputs, such as 

atomic radii and electronegativities, 

thereby mitigating overfitting. A 

compelling example involves gold 

nanostars, where LASSO-boosted RF 

regressors accurately predict localized 

surface plasmon (LSP) resonance 

bands—key for biomedical sensing—

achieving R² values exceeding 0.9 across 

varied tip morphologies and sizes. This 

approach not only accelerates screening 

of plasmonic nanostructures but also 

reveals interpretable design rules, like 

tip sharpness correlating with blue-

shifted peaks, guiding targeted synthesis 

for enhanced optical performance [3]. 
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• Bayesian optimization (BO) 

revolutionizes nanomaterial synthesis 

by efficiently tuning parameters like 

temperature, precursor ratios, and pH to 

maximize homogeneous yields or target 

morphologies. Employing a surrogate 

Gaussian Process model, BO balances 

exploration of uncertain regions and 

exploitation of promising ones via an 

acquisition function, such as Expected 

Improvement. In nanoparticle 

production, BO slashes experimental 

trials by 73% compared to grid search, as 

demonstrated in quantum dot synthesis 

where it honed ligand concentrations for 

uniform size distributions below 5% 

polydispersity. This sample-efficient 

strategy integrates seamlessly with 

robotic labs, accelerating discovery of 

stable perovskites or alloy catalysts 

while minimizing resource waste [1]. 

• Generative Adversarial Networks 

(GANs) and Variational Autoencoders 

(VAEs) empower inverse design in 

nanomaterials, inverting the traditional 

workflow by generating novel structures 

directly from desired properties like 

target band gaps or catalytic activity. 

GANs pit a generator against a 

discriminator to produce realistic atomic 

configurations or morphologies, while 

VAEs learn latent spaces for 

interpolating between known 

nanomaterials, enabling probabilistic 

sampling of unseen candidates. For 

example, in 2D materials design, VAEs 

conditioned on electronic properties 

yield stable MXene variants with 

tailored conductivity, slashing 

computational screening by orders of 

magnitude. This paradigm fosters 

discovery of optimal nanostructures for 

photovoltaics or sensors, bridging 

property-driven intuition with scalable 

synthesis [4]. 

• Active Learning: Active learning 

iteratively refines ML models for 

nanomaterials by strategically querying 

high-uncertainty data points, 

maximizing information gain per 

experiment or simulation. Unlike 

passive training on fixed datasets, it 

employs acquisition functions—like 

BALD or entropy—to select candidates 

where predictions are least confident, 

closing knowledge gaps efficiently. In 

porous materials, neuroevolution 

potentials (e.g., via genetic algorithms 

optimizing neural networks) exemplify 

this: starting from sparse DFT data, the 

loop evolves surrogate models for gas 

adsorption or mechanical properties, 

reducing total computations by 50-80% 

while achieving sub-meV accuracy. This 

closed-loop strategy accelerates 

discovery of zeolites or MOFs for carbon 

capture, integrating seamlessly with 

high-throughput robotics [5]. 

Hybrid approaches combine ML with DFT or 

MD simulations for scalable accuracy [6]. 

Discussion 

ML excels in property prediction, with 

models achieving 80-95% accuracy for 

nanoparticle morphology and electronic traits. In 

energy applications, graph-based ML designed 

high-entropy Na-ion cathodes with superior 

stability. Inverse design yields complex 

structures like helical NP crystals or plasmonic 

Bragg reflectors. 

Application ML Technique Key Outcome [Citation] 

Battery Electrodes GNN + Bayesian Opt. 90% yield enhancement [1] 

Thermal Materials Neuroevolution Potential Predicted switches via compression [7] 

http://www.ijoer.in/


International Journal of Engineering Research-Online  
A Peer Reviewed International Journal   

ISSN: 2321-7758             http://www.ijoer.in    editorijoer@gmail.com 

Vol.14., S1, 2026 
January    

 

43 Dr. K. Jayadev, U. V. B. B. Krishna Prasad 
 

 

Nanostar Optics RF + LASSO LSP band prediction R² >0.9 [3] 

2D Materials GANs Inverse structure from band gaps [4] 

Challenges persist: sparse, noisy nano-

datasets limit generalization, and black-box 

models hinder interpretability. Solutions include 

transfer learning and SHAP analysis for feature 

insights. Future directions encompass 

multimodal LLMs for few-shot predictions and 

automated labs. 

Conclusion 

 Machine learning (ML) heralds a 

transformative era in nanomaterials design, 

delivering unprecedented efficiency and 

precision that slashes discovery timelines from 

years of painstaking experimentation to mere 

months of data-driven iteration. By harnessing 

vast datasets from simulations, experiments, and 

high-throughput screening, ML models not only 

predict properties with near-quantum accuracy 

but also enable inverse design—crafting bespoke 

nanostructures tailored for specific applications, 

from ultra-stable battery cathodes to plasmonic 

sensors with pinpoint optical responses. This 

acceleration is vividly illustrated in recent 

breakthroughs: neuroevolution potentials 

optimizing porous frameworks for CO2 capture, 

or generative models yielding high-entropy 

alloys with 30% enhanced cyclability in next-

generation Na-ion batteries. 

 Looking ahead, integrating ever-larger, 

multimodal datasets—encompassing 

spectroscopic fingerprints, morphological 

imaging, and real-time synthesis telemetry—

alongside explainable AI techniques like SHAP 

analysis and attention mechanisms, will 

demystify black-box predictions. These 

advancements promise interpretable design 

rules, fostering trust and adoption in industrial 

pipelines. In renewables, ML-guided 

nanomaterials could revolutionize photovoltaics 

with tandem perovskites exceeding 35% 

efficiency, solid-state electrolytes mitigating 

dendrite formation in lithium-metal anodes, and 

nanostructured catalysts slashing overpotentials 

for green hydrogen production. Beyond energy, 

applications span biomedicine (targeted drug 

delivery via smart nanoparticles), electronics 

(flexible quantum dot displays), and 

environmental remediation (photocatalytic 

nanofilters for microplastics). 

 Sustained interdisciplinary 

collaboration—merging materials scientists, data 

engineers, chemists, and domain experts—

remains pivotal. Coupling ML with autonomous 

labs, digital twins, and ethical AI frameworks 

will mitigate challenges like data bias and 

scalability, unlocking sustainable, scalable 

nanomaterial innovations. Ultimately, this 

synergy positions ML as the cornerstone of a 

circular materials economy, driving humanity 

toward resilient technologies that address 

climate imperatives and resource scarcity with 

ingenuity and foresight.  

References 

[1]. Hundekari, S., Prakash, J., Choudari, S., 

Asaduzzaman, M., Koley, B. L., & Ray, S. 

(2024). Machine Learning-Driven 

Nanomaterial Design: Predictive Modeling 

for Enhanced Performance in 

Electronics. Nanomaterials and Technology 

Perspectives, Article 3066. https://nano-

ntp.com/index.php/nano/article/view/30

66. 

[2]. Choudhary, K., & Agrawal, A. (2020). 

Machine learning approaches for the 

prediction of materials properties. APL 

Materials, 8(8), Article 

080701. https://pubs.aip.org/aip/apm/arti

cle/8/8/080701/122765/Machine-learning-

approaches-for-the-prediction-of. 

[3]. Wu, P., & colleagues. (2025). Machine 

learning to predict gold nanostar optical 

properties. PubMed 

http://www.ijoer.in/
https://nano-ntp.com/index.php/nano/article/view/3066.
https://nano-ntp.com/index.php/nano/article/view/3066.
https://nano-ntp.com/index.php/nano/article/view/3066.
https://pubs.aip.org/aip/apm/article/8/8/080701/122765/Machine-learning-approaches-for-the-prediction-of.
https://pubs.aip.org/aip/apm/article/8/8/080701/122765/Machine-learning-approaches-for-the-prediction-of.
https://pubs.aip.org/aip/apm/article/8/8/080701/122765/Machine-learning-approaches-for-the-prediction-of.


International Journal of Engineering Research-Online  
A Peer Reviewed International Journal   

ISSN: 2321-7758             http://www.ijoer.in    editorijoer@gmail.com 

Vol.14., S1, 2026 
January    

 

44 Dr. K. Jayadev, U. V. B. B. Krishna Prasad 
 

 

Central. https://pmc.ncbi.nlm.nih.gov/artic

les/PMC12108964/. 

[4]. Han, X.-Q., Wang, X.-D., Xu, M.-Y., Feng, Z., 

Yao, B.-W., Guo, P.-J., Gao, Z.-F., & Lu, Z.-Y. 

(2024). AI-driven inverse design of materials: 

Past, present and future. arXiv preprint 

arXiv:2411.09429v1. 

https://arxiv.org/html/2411.09429v1. 

[5]. Zhang, S., & Li, X. (2025, October). Machine 

learning helps identify 'thermal switch' for next-

generation nanomaterials. 

Phys.org. https://phys.org/news/2025-10-

machine-thermal-generation-

nanomaterials.html. 

[6]. Dubrovsky, I., Dmitrenko, A., Dmitrenko, 

A., Serov, N., & Vinogradov, V. 

(2024). Unveiling the potential of AI for 

nanomaterial morphology prediction. 

arXiv. https://arxiv.org/abs/2406.02591. 

[7]. Zhang, S., & Li, X. (2025, October 

15). Machine learning helps identify 'thermal 

switch' for next-generation nanomaterials. 

Phys.org. https://phys.org/news/2025-10-

machine-thermal-generation-

nanomaterials.html. 

 

http://www.ijoer.in/
https://pmc.ncbi.nlm.nih.gov/articles/PMC12108964/
https://pmc.ncbi.nlm.nih.gov/articles/PMC12108964/
https://arxiv.org/html/2411.09429v1
https://phys.org/news/2025-10-machine-thermal-generation-nanomaterials.html
https://phys.org/news/2025-10-machine-thermal-generation-nanomaterials.html
https://phys.org/news/2025-10-machine-thermal-generation-nanomaterials.html
https://arxiv.org/abs/2406.02591
https://phys.org/news/2025-10-machine-thermal-generation-nanomaterials.html
https://phys.org/news/2025-10-machine-thermal-generation-nanomaterials.html
https://phys.org/news/2025-10-machine-thermal-generation-nanomaterials.html

