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Abstract

Hybrid iterative solvers integrate classical numerical methods with neural
preconditioners to solve parametric partial differential equations (PDEs)
efficiently across diverse geometries and parameters. Geometry-aware
neural operators, such as Geo-DeepONet, encode mesh connectivity to
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ensure robustness on unstructured domains without retraining. This review

covers foundational principles, methodological advances like Fourier Neural
Solvers (FNS), and applications in multiscale physics, achieving grid-
independent convergence rates. Recent 2025 developments demonstrate
superior speedups over multigrid for real-world problems in fluid dynamics
and electromagnetics, heralding scalable computational science.

Keywords: Hybrid solvers, neural preconditioners, geometry-aware
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Introduction Classical iterative solvers, including
point Jacobi and Gauss-Seidel smoothers, Krylov
subspace methods like GMRES and BiCGSTAB,
and algebraic/ geometric multigrid
(AMG/GMG), shine on structured, uniform
grids with predictable spectra. They achieve

Parametric partial differential equations
(PDEs) form the mathematical backbone of
simulations across engineering and physics,
governing phenomena from incompressible

Navier-Stokes flows in aerodynamics to

Schrodinger equations in quantum mechanics. rapid convergence through defect correction and

Solutions to these PDEs dynamically vary with ~ c0se-grid hierarchies. Yet, they falter on

input parameters—such as fluid viscosity, complex, parametric geometries —think patient-

thermal diffusivity, material permittivity, or specific heart models or fractured reservoirs—

geometric perturbations — necessitating repeated due to ill-conditioning  from disparate

. eigenvalues, exacerbated by parameter sweeps
solves over expansive parameter spaces for tasks

like sensitivity analysis or control optimization. that shift spectral gaps unpredictably. Stiffness

This parametric  dependence amplifies from multiscale features or high-contrast

computational demands, especially in high- coefficients often demands hundreds of

dimensional settings where traditional direct iterations or complete preconditioner rebuilds

. . s . er parameter instance.
solvers like Gaussian elimination scale cubically perp

with degrees of freedom.
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Hybrid approaches fuse these numerical
workhorses with deep learning, deploying
neural networks as dynamic preconditioners P =
M+ N,.
damped Jacobi) efficiently damp high-frequency

Here, classical smoothers M (e.g.,
errors, while neural operators exploit spectral

bias—favoring  low-frequency =~ modes—to
annihilate smooth, global residuals in few steps.
Geometry-aware innovations elevate this
synergy: by encoding finite element adjacency
matrices or mesh Laplacians into graph neural
networks or DeepONets, models ingest domain
topology

generalization to unseen unstructured meshes

directly,  ensuring  zero-shot
without retraining. Benchmarks report 50-80%
iteration reductions for Stokes flows on irregular
and Helmholtz

evanescent waves.

domains problems  with

This paradigm shift unlocks real-time

parametric ~ studies,  enabling  Bayesian
uncertainty quantification via thousands of
Monte Carlo solves, robust optimal design in
flutter

biomedicine (e.g., personalized drug diffusion

aerospace (e.g., suppression), and

models). As hardware accelerates and operator

learning matures, hybrid solvers promise
democratized access to petascale physics
simulations, bridging the gap between theory
and deployment [1].
Methodology

Hybrid solvers follow the
iteration x4, = x, + P"1(b — Ax),), where P =
M + Ny combines classical

preconditioner M (e.g., damped Jacobi) with
neural operator Ny [2].

e Data curation forms the cornerstone of
training hybrid solvers for parametric PDEs,
involving systematic assembly of right-hand
sides b = A(u)f from finite element (FEM) or
finite difference (FDM) discretizations across
wide parameter ranges (#) and geometries.
Sources include synthetic solves on reference
domains—e.g., Poisson with diffusion

coefficients  from 1072 to 10> —augmented

by affine mappings to deformed meshes via

transfinite interpolation. High-fidelity labels
come from overdetermined systems where
ground-truth solutions u* yield b = Au”,
ensuring residual consistency. Techniques
like Latin hypercube sampling span
parameter spaces efficiently, while domain
randomization (e.g., random perturbations
of boundary nodes) promotes geometry
invariance. Curated datasets, often 10°4-
balance

10”5  samples, computational

feasibility with generalization, enabling

robust neural  preconditioners.Neural
Architecture:  Geo-DeepONet  branches
encode node connectivity (adjacency

matrices) and trunk processes inputs; FNS
uses meta-subnets for eigenvalue-inverse
and Fourier-mode transitions .

e Training hybrid solvers centers on
minimizing residual losses over a fixed
number of iterations K, typically 5-10, via

IIrgll2
Il

b — Axy denotes the
after K preconditioned steps. This end-to-

optimization of L(8) = E ], where 1y =

residual

end objective enforces convergence within
budget, bypassing per-iteration supervision.
Spectral complementarity guides
architecture: classical smoothers (e.g., Jacobi)
target high-frequency modes, while neural
preconditioners Ny specialize ~ in  low-
frequency damping, verified through
eigenvalue diagnostics on validation spectra.
AdamW optimizers with cosine annealing
(LR from 1073 to 107°) train over 10°4-10"5
batches,

regularization like

incorporating physics-informed
divergence-free
constraints for Stokes. Early stopping on
held-out geometries ensures parameter-
robust generalization, yielding operators
that halve iteration counts across unseen
PDE variants [2].

Geometry encoding leverages adjacency
matrices or graph Laplacians derived from
unstructured finite element meshes to inject rich
domain topology into neural preconditioners,
such as graph neural networks (GNNs) or
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geometry-aware DeepONets. Node-wise
features incorporate connectivity —edge weights
reflecting shared facets or distances—enabling
models to capture anisotropic diffusion,
boundary layers, and multiscale features without
explicit meshing in inputs. This mesh-native
representation ensures zero-shot generalization:
a preconditioner trained on L-shaped domains
seamlessly transfers to warped airfoils or
fractured media, preserving spectral properties

across topologically distinct geometries.

Active learning refines these operators
through
querying high-entropy residuals or predictive

uncertainty sampling, iteratively
variances from a pool of candidate PDE
instances. Starting with a seed dataset, the
framework selects parameter-geometry pairs
maximizing information gain—e.g., via BALD
acquisition —then solves via FEM to label new

right-hand sides. This closed-loop process,
cycled 5-10 times, boosts robustness to outliers
like high-contrast coefficients or evanescent
modes, cutting validation errors by 40% while
using 70% fewer training samples than static
they
deployable solvers for parametric real-world

curation. Together, forge adaptive,

simulations [2].
Discussion

FNS achieves parameter-independent
convergence (e.g., 9 iterations for Poisson across
scales), outperforming GMG on random
diffusion PDEs. Geo-DeepONet hybrids with
Krylov methods yield 5x speedups on irregular
domains for Stokes flow and Helmholtz

equations.

PDE Type Hybrid Method Speedup vs. Classical [Citation]
Poisson FNS + Jacobi Grid-independent, 9 iters [2]
Stokes Geo-DeepONet + GMRES 70% fewer iters unstructured [2]
Helmholtz Neural + Relaxation Robust to high-freq. scattering [3]
Parametric Diffusion Spectral DL-HIM Handles 1073 params [2]

Challenges include training data for rare
events and extrapolation; solutions via physics-
informed losses and operator ensembles address
these. Future: integration with PINNs for
nonlinear PDEs [2].

Conclusion

Hybrid iterative solvers with geometry-

aware neural preconditioners revolutionize
parametric PDE solving, merging numerical
stability with data-driven adaptability. These
methods democratize high-fidelity simulations
on unstructured domains, slashing costs for

parametric sweeps. As datasets grow and

References

[1]. Lee, Y., Levrero Florencio, F., Pathak, J., &
Karniadakis, G. E. (2025). Hybrid iterative
solvers with neural

preconditioners ~ for  parametric ~ PDEs.

arXiv. https:/ /arxiv.org/abs/2512.14596.

geometry-aware

[2]. Cui, C,, Jiang, K., Liu, Y., & Shu, S. (2024). A
hybrid iterative neural solver based on spectral
analysis for
PDEs (arXiv:2408.08540v2).
arXiv. https:/ /arxiv.org/abs/2408.08540

parametric

[3]. Li Z, et al. Optical neural engine for solving
scientific partial differential equations. Nat.

architectures evolve, expect deployment in Mach. Intell. 7, 123-135 (2025).
digital twins and real-time control, transforming

computational engineering.

Mutyala Venkateswara Rao


http://www.ijoer.in/
https://arxiv.org/abs/2512.14596
https://arxiv.org/abs/2408.08540

