

Special issue**ISSN: 2321-7758**

Hybrid Iterative Solvers with Geometry-Aware Neural Preconditioners for Parametric PDEs

Mutyala Venkateswara Rao

Department of Mathematics

Government Degree College Avanigadda

DOI: [10.33329/ijoer.14.S1.26](https://doi.org/10.33329/ijoer.14.S1.26)**Abstract**

Hybrid iterative solvers integrate classical numerical methods with neural preconditioners to solve parametric partial differential equations (PDEs) efficiently across diverse geometries and parameters. Geometry-aware neural operators, such as Geo-DeepONet, encode mesh connectivity to ensure robustness on unstructured domains without retraining. This review covers foundational principles, methodological advances like Fourier Neural Solvers (FNS), and applications in multiscale physics, achieving grid-independent convergence rates. Recent 2025 developments demonstrate superior speedups over multigrid for real-world problems in fluid dynamics and electromagnetics, heralding scalable computational science.

Keywords: Hybrid solvers, neural preconditioners, geometry-aware operators, parametric PDEs, iterative methods..

Introduction

Parametric partial differential equations (PDEs) form the mathematical backbone of simulations across engineering and physics, governing phenomena from incompressible Navier-Stokes flows in aerodynamics to Schrödinger equations in quantum mechanics. Solutions to these PDEs dynamically vary with input parameters—such as fluid viscosity, thermal diffusivity, material permittivity, or geometric perturbations—necessitating repeated solves over expansive parameter spaces for tasks like sensitivity analysis or control optimization. This parametric dependence amplifies computational demands, especially in high-dimensional settings where traditional direct solvers like Gaussian elimination scale cubically with degrees of freedom.

Classical iterative solvers, including point Jacobi and Gauss-Seidel smoothers, Krylov subspace methods like GMRES and BiCGSTAB, and algebraic/geometric multigrid (AMG/GMG), shine on structured, uniform grids with predictable spectra. They achieve rapid convergence through defect correction and coarse-grid hierarchies. Yet, they falter on complex, parametric geometries—think patient-specific heart models or fractured reservoirs—due to ill-conditioning from disparate eigenvalues, exacerbated by parameter sweeps that shift spectral gaps unpredictably. Stiffness from multiscale features or high-contrast coefficients often demands hundreds of iterations or complete preconditioner rebuilds per parameter instance.

Hybrid approaches fuse these numerical workhorses with deep learning, deploying neural networks as dynamic preconditioners $P = M + \mathcal{N}_\theta$. Here, classical smoothers M (e.g., damped Jacobi) efficiently damp high-frequency errors, while neural operators exploit spectral bias—favoring low-frequency modes—to annihilate smooth, global residuals in few steps. Geometry-aware innovations elevate this synergy: by encoding finite element adjacency matrices or mesh Laplacians into graph neural networks or DeepONets, models ingest domain topology directly, ensuring zero-shot generalization to unseen unstructured meshes without retraining. Benchmarks report 50-80% iteration reductions for Stokes flows on irregular domains and Helmholtz problems with evanescent waves.

This paradigm shift unlocks real-time parametric studies, enabling Bayesian uncertainty quantification via thousands of Monte Carlo solves, robust optimal design in aerospace (e.g., flutter suppression), and biomedicine (e.g., personalized drug diffusion models). As hardware accelerates and operator learning matures, hybrid solvers promise democratized access to petascale physics simulations, bridging the gap between theory and deployment [1].

Methodology

Hybrid solvers follow the iteration $x_{k+1} = x_k + P^{-1}(b - Ax_k)$, where $P = M + \mathcal{N}_\theta$ combines classical preconditioner M (e.g., damped Jacobi) with neural operator \mathcal{N}_θ [2].

- Data curation forms the cornerstone of training hybrid solvers for parametric PDEs, involving systematic assembly of right-hand sides $b = A(\mu)f$ from finite element (FEM) or finite difference (FDM) discretizations across wide parameter ranges (μ) and geometries. Sources include synthetic solves on reference domains—e.g., Poisson with diffusion coefficients from 10^{-2} to 10^2 —augmented by affine mappings to deformed meshes via

transfinite interpolation. High-fidelity labels come from overdetermined systems where ground-truth solutions u^* yield $b = Au^*$, ensuring residual consistency. Techniques like Latin hypercube sampling span parameter spaces efficiently, while domain randomization (e.g., random perturbations of boundary nodes) promotes geometry invariance. Curated datasets, often 10^4 - 10^5 samples, balance computational feasibility with generalization, enabling robust neural preconditioners.

Neural Architecture: Geo-DeepONet branches encode node connectivity (adjacency matrices) and trunk processes inputs; FNS uses meta-subnets for eigenvalue-inverse and Fourier-mode transitions.

- Training hybrid solvers centers on minimizing residual losses over a fixed number of iterations K , typically 5-10, via optimization of $\mathcal{L}(\theta) = \mathbb{E} \left[\frac{\|r_K\|_2}{\|b\|_2} \right]$, where $r_K = b - Ax_K$ denotes the residual after K preconditioned steps. This end-to-end objective enforces convergence within budget, bypassing per-iteration supervision. Spectral complementarity guides architecture: classical smoothers (e.g., Jacobi) target high-frequency modes, while neural preconditioners \mathcal{N}_θ specialize in low-frequency damping, verified through eigenvalue diagnostics on validation spectra. AdamW optimizers with cosine annealing (LR from 10^{-3} to 10^{-5}) train over 10^4 - 10^5 batches, incorporating physics-informed regularization like divergence-free constraints for Stokes. Early stopping on held-out geometries ensures parameter-robust generalization, yielding operators that halve iteration counts across unseen PDE variants [2].

Geometry encoding leverages adjacency matrices or graph Laplacians derived from unstructured finite element meshes to inject rich domain topology into neural preconditioners, such as graph neural networks (GNNs) or

geometry-aware DeepONets. Node-wise features incorporate connectivity—edge weights reflecting shared facets or distances—enabling models to capture anisotropic diffusion, boundary layers, and multiscale features without explicit meshing in inputs. This mesh-native representation ensures zero-shot generalization: a preconditioner trained on L-shaped domains seamlessly transfers to warped airfoils or fractured media, preserving spectral properties across topologically distinct geometries.

Active learning refines these operators through uncertainty sampling, iteratively querying high-entropy residuals or predictive variances from a pool of candidate PDE instances. Starting with a seed dataset, the framework selects parameter-geometry pairs maximizing information gain—e.g., via BALD acquisition—then solves via FEM to label new

right-hand sides. This closed-loop process, cycled 5–10 times, boosts robustness to outliers like high-contrast coefficients or evanescent modes, cutting validation errors by 40% while using 70% fewer training samples than static curation. Together, they forge adaptive, deployable solvers for parametric real-world simulations [2].

Discussion

FNS achieves parameter-independent convergence (e.g., 9 iterations for Poisson across scales), outperforming GMG on random diffusion PDEs. Geo-DeepONet hybrids with Krylov methods yield 5x speedups on irregular domains for Stokes flow and Helmholtz equations.

PDE Type	Hybrid Method	Speedup vs. Classical [Citation]
Poisson	FNS + Jacobi	Grid-independent, 9 iters [2]
Stokes	Geo-DeepONet + GMRES	70% fewer iters unstructured [2]
Helmholtz	Neural + Relaxation	Robust to high-freq. scattering [3]
Parametric Diffusion	Spectral DL-HIM	Handles 10^3 params [2]

Challenges include training data for rare events and extrapolation; solutions via physics-informed losses and operator ensembles address these. Future: integration with PINNs for nonlinear PDEs [2].

Conclusion

Hybrid iterative solvers with geometry-aware neural preconditioners revolutionize parametric PDE solving, merging numerical stability with data-driven adaptability. These methods democratize high-fidelity simulations on unstructured domains, slashing costs for parametric sweeps. As datasets grow and architectures evolve, expect deployment in digital twins and real-time control, transforming computational engineering.

References

- [1]. Lee, Y., Levrero Florencio, F., Pathak, J., & Karniadakis, G. E. (2025). *Hybrid iterative solvers with geometry-aware neural preconditioners for parametric PDEs*. arXiv. <https://arxiv.org/abs/2512.14596>.
- [2]. Cui, C., Jiang, K., Liu, Y., & Shu, S. (2024). *A hybrid iterative neural solver based on spectral analysis for parametric PDEs* (arXiv:2408.08540v2). arXiv. <https://arxiv.org/abs/2408.08540>
- [3]. Li Z, et al. Optical neural engine for solving scientific partial differential equations. *Nat. Mach. Intell.* 7, 123-135 (2025).