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Abstract 

Hybrid iterative solvers integrate classical numerical methods with neural 

preconditioners to solve parametric partial differential equations (PDEs) 

efficiently across diverse geometries and parameters. Geometry-aware 

neural operators, such as Geo-DeepONet, encode mesh connectivity to 

ensure robustness on unstructured domains without retraining. This review 

covers foundational principles, methodological advances like Fourier Neural 

Solvers (FNS), and applications in multiscale physics, achieving grid-

independent convergence rates. Recent 2025 developments demonstrate 

superior speedups over multigrid for real-world problems in fluid dynamics 

and electromagnetics, heralding scalable computational science. 

Keywords: Hybrid solvers, neural preconditioners, geometry-aware 

operators, parametric PDEs, iterative methods.. 

Introduction 

Parametric partial differential equations 

(PDEs) form the mathematical backbone of 

simulations across engineering and physics, 

governing phenomena from incompressible 

Navier-Stokes flows in aerodynamics to 

Schrödinger equations in quantum mechanics. 

Solutions to these PDEs dynamically vary with 

input parameters—such as fluid viscosity, 

thermal diffusivity, material permittivity, or 

geometric perturbations—necessitating repeated 

solves over expansive parameter spaces for tasks 

like sensitivity analysis or control optimization. 

This parametric dependence amplifies 

computational demands, especially in high-

dimensional settings where traditional direct 

solvers like Gaussian elimination scale cubically 

with degrees of freedom. 

Classical iterative solvers, including 

point Jacobi and Gauss-Seidel smoothers, Krylov 

subspace methods like GMRES and BiCGSTAB, 

and algebraic/geometric multigrid 

(AMG/GMG), shine on structured, uniform 

grids with predictable spectra. They achieve 

rapid convergence through defect correction and 

coarse-grid hierarchies. Yet, they falter on 

complex, parametric geometries—think patient-

specific heart models or fractured reservoirs—

due to ill-conditioning from disparate 

eigenvalues, exacerbated by parameter sweeps 

that shift spectral gaps unpredictably. Stiffness 

from multiscale features or high-contrast 

coefficients often demands hundreds of 

iterations or complete preconditioner rebuilds 

per parameter instance. 
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Hybrid approaches fuse these numerical 

workhorses with deep learning, deploying 

neural networks as dynamic preconditioners 𝑃 =

𝑀 + 𝒩𝜃 . Here, classical smoothers 𝑀 (e.g., 

damped Jacobi) efficiently damp high-frequency 

errors, while neural operators exploit spectral 

bias—favoring low-frequency modes—to 

annihilate smooth, global residuals in few steps. 

Geometry-aware innovations elevate this 

synergy: by encoding finite element adjacency 

matrices or mesh Laplacians into graph neural 

networks or DeepONets, models ingest domain 

topology directly, ensuring zero-shot 

generalization to unseen unstructured meshes 

without retraining. Benchmarks report 50-80% 

iteration reductions for Stokes flows on irregular 

domains and Helmholtz problems with 

evanescent waves. 

This paradigm shift unlocks real-time 

parametric studies, enabling Bayesian 

uncertainty quantification via thousands of 

Monte Carlo solves, robust optimal design in 

aerospace (e.g., flutter suppression), and 

biomedicine (e.g., personalized drug diffusion 

models). As hardware accelerates and operator 

learning matures, hybrid solvers promise 

democratized access to petascale physics 

simulations, bridging the gap between theory 

and deployment [1]. 

Methodology 

Hybrid solvers follow the 

iteration 𝑥𝑘+1 = 𝑥𝑘 + 𝑃−1(𝑏 − 𝐴𝑥𝑘), where 𝑃 =

𝑀 + 𝒩𝜃  combines classical 

preconditioner 𝑀 (e.g., damped Jacobi) with 

neural operator 𝒩𝜃 [2]. 

• Data curation forms the cornerstone of 

training hybrid solvers for parametric PDEs, 

involving systematic assembly of right-hand 

sides 𝑏 = 𝐴(𝜇)𝑓 from finite element (FEM) or 

finite difference (FDM) discretizations across 

wide parameter ranges (𝜇) and geometries. 

Sources include synthetic solves on reference 

domains—e.g., Poisson with diffusion 

coefficients from 10−2 to 102—augmented 

by affine mappings to deformed meshes via 

transfinite interpolation. High-fidelity labels 

come from overdetermined systems where 

ground-truth solutions 𝑢∗ yield 𝑏 = 𝐴𝑢∗, 

ensuring residual consistency. Techniques 

like Latin hypercube sampling span 

parameter spaces efficiently, while domain 

randomization (e.g., random perturbations 

of boundary nodes) promotes geometry 

invariance. Curated datasets, often 10^4–

10^5 samples, balance computational 

feasibility with generalization, enabling 

robust neural preconditioners.Neural 

Architecture: Geo-DeepONet branches 

encode node connectivity (adjacency 

matrices) and trunk processes inputs; FNS 

uses meta-subnets for eigenvalue-inverse 

and Fourier-mode transitions . 

• Training hybrid solvers centers on 

minimizing residual losses over a fixed 

number of iterations 𝐾, typically 5–10, via 

optimization of ℒ(𝜃) = 𝔼 [
∥𝑟𝐾∥2

∥𝑏∥2
], where 𝑟𝐾 =

𝑏 − 𝐴𝑥𝐾 denotes the residual 

after 𝐾 preconditioned steps. This end-to-

end objective enforces convergence within 

budget, bypassing per-iteration supervision. 

Spectral complementarity guides 

architecture: classical smoothers (e.g., Jacobi) 

target high-frequency modes, while neural 

preconditioners 𝒩𝜃 specialize in low-

frequency damping, verified through 

eigenvalue diagnostics on validation spectra. 

AdamW optimizers with cosine annealing 

(LR from 10−3 to 10−5) train over 10^4–10^5 

batches, incorporating physics-informed 

regularization like divergence-free 

constraints for Stokes. Early stopping on 

held-out geometries ensures parameter-

robust generalization, yielding operators 

that halve iteration counts across unseen 

PDE variants [2]. 

Geometry encoding leverages adjacency 

matrices or graph Laplacians derived from 

unstructured finite element meshes to inject rich 

domain topology into neural preconditioners, 

such as graph neural networks (GNNs) or 
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geometry-aware DeepONets. Node-wise 

features incorporate connectivity—edge weights 

reflecting shared facets or distances—enabling 

models to capture anisotropic diffusion, 

boundary layers, and multiscale features without 

explicit meshing in inputs. This mesh-native 

representation ensures zero-shot generalization: 

a preconditioner trained on L-shaped domains 

seamlessly transfers to warped airfoils or 

fractured media, preserving spectral properties 

across topologically distinct geometries. 

Active learning refines these operators 

through uncertainty sampling, iteratively 

querying high-entropy residuals or predictive 

variances from a pool of candidate PDE 

instances. Starting with a seed dataset, the 

framework selects parameter-geometry pairs 

maximizing information gain—e.g., via BALD 

acquisition—then solves via FEM to label new 

right-hand sides. This closed-loop process, 

cycled 5–10 times, boosts robustness to outliers 

like high-contrast coefficients or evanescent 

modes, cutting validation errors by 40% while 

using 70% fewer training samples than static 

curation. Together, they forge adaptive, 

deployable solvers for parametric real-world 

simulations [2]. 

Discussion 

FNS achieves parameter-independent 

convergence (e.g., 9 iterations for Poisson across 

scales), outperforming GMG on random 

diffusion PDEs. Geo-DeepONet hybrids with 

Krylov methods yield 5x speedups on irregular 

domains for Stokes flow and Helmholtz 

equations. 

 

 

PDE Type Hybrid Method Speedup vs. Classical [Citation] 

Poisson FNS + Jacobi Grid-independent, 9 iters [2] 

Stokes Geo-DeepONet + GMRES 70% fewer iters unstructured [2] 

Helmholtz Neural + Relaxation Robust to high-freq. scattering [3] 

Parametric Diffusion Spectral DL-HIM Handles 10^3 params [2] 

Challenges include training data for rare 

events and extrapolation; solutions via physics-

informed losses and operator ensembles address 

these. Future: integration with PINNs for 

nonlinear PDEs [2]. 

Conclusion 

Hybrid iterative solvers with geometry-

aware neural preconditioners revolutionize 

parametric PDE solving, merging numerical 

stability with data-driven adaptability. These 

methods democratize high-fidelity simulations 

on unstructured domains, slashing costs for 

parametric sweeps. As datasets grow and 

architectures evolve, expect deployment in 

digital twins and real-time control, transforming 

computational engineering. 
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