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Abstract 

Differential and integral equations underpin models in physics, engineering, 

and computational fluid dynamics. Classical numerical methods, including 

finite differences, finite elements, and collocation schemes, discretize 

continuous operators with proven convergence but high computational 

demands for complex geometries or multiscale phenomena. Data-driven 

approaches, such as sparse regression (e.g., SINDy), symbolic regression via 

genetic programming, and deep learning (e.g., PINNs, neural operators), 

infer governing laws from simulation or observational data, enabling 

discovery of unknown dynamics and coarse-graining at reduced resolutions. 

This review categorizes methodologies, benchmarks performance on 

canonical equations like Burgers' and Navier-Stokes, discusses hybrids for 

enhanced robustness, and outlines challenges in uncertainty quantification 

and scalability. Hybrids promise interpretable, data-efficient solvers for real-

world applications in renewable energy modeling and multiphase flows. 

Keywords: Finite difference methods, Physics-informed neural networks, 

Galerkin methods, Sparse identification (SINDy), Neural operators. 

Introduction 

Differential equations (DEs) describe 

dynamic evolution in systems from fluid flow to 

quantum mechanics, while integral equations 

(IEs) model nonlocal interactions like potential 

theory. Ordinary DEs (ODEs) govern time-

dependent processes, partial DEs (PDEs) 

incorporate space, and IEs arise in Fredholm or 

Volterra forms for inverse problems. Numerical 

solution demands balancing accuracy, stability, 

and efficiency, especially for nonlinear stiff 

systems prevalent in computational fluid 

dynamics (CFD) and renewable energy 

simulations [1,2]. 

Classical methods discretize domains 

into grids or mesh, approximating derivatives 

via Taylor expansions or weak formulations. 

Finite difference methods (FDMs) suit regular 

grids, finite element methods (FEMs) irregular 

domains, and spectral methods smooth 

solutions. For IEs, Nyström quadrature or 

projection methods reduce to DEs. These yield 

systems solvable by explicit/implicit time-

stepping like Runge-Kutta or backward Euler, 

with error bounds via Lax equivalence theorem: 
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consistency plus stability implies convergence 

[3]. 

Data-driven methods emerged post-

2016, fueled by AI advances. Sparse regression 

builds candidate libraries (polynomials, trig 

functions) and prunes via L1 penalties, 

discovering sparse nonlinear laws (SINDy). 

Symbolic regression evolves expressions 

genetically. Neural networks parameterize 

solutions (Neural ODEs) or operators (FNO), 

embedding PDE residuals in losses for mesh-free 

solving. Data-driven discretization learns stencil 

coefficients from high-res data, achieving 4-8x 

coarser grids without divergence [2]. 

This review structures as: Methodology 

details classical and data-driven solvers; 

Discussion compares via benchmarks, hybrids; 

Conclusion charts paths forward. Emphasis lies 

on CFD relevance, aligning with multiphase flow 

and sustainability modelling [4]. 

Methodology 

Classical Approaches 

Finite Difference and Finite Volume Methods 

FDMs approximate derivatives: 

central 
𝑢𝑖+1−𝑢𝑖−1

2𝛥𝑥
 for first-order, higher via 

stencils. For hyperbolic PDEs like advection 𝑢𝑡 +

𝑎𝑢𝑥 = 0, upwind schemes ensure CFL stability ∣

𝑎 ∣ 𝛥𝑡/𝛥𝑥 ≤ 1. Finite volume conserves 

fluxes: 
𝑑

𝑑𝑡
𝑢ˉ𝑖 =

𝐹𝑖−1/2−𝐹𝑖+1/2

𝛥𝑥
, with Riemann solvers 

for shocks (Godunov). WENO adaptively 

weights smooth stencils, suppressing 

oscillations.[ 5] 

For viscous Burgers' 𝑣𝑡 + (𝑣2/2 −

𝜂𝑣𝑥)𝑥 = 𝑓, FVM integrates cell averages, 

resolving shocks at width ∼ 𝜂. Navier-Stokes 

extends via projection methods decoupling 

velocity-pressure [2]. 

 

Finite Element and Galerkin Methods 

FEMs minimize residuals in weak 

form: ∫ 𝛻𝑢 ⋅ 𝛻𝑣 = ∫ 𝑓𝑣, yielding sparse matrices 

solved by CG. For IEs, Galerkin projects kernels 

onto bases, e.g., discrete ∑𝜙𝑗(𝑥)𝐾(𝑥, 𝑦)𝑢(𝑦)𝑑𝑦 =

𝑓(𝑥). hp-adaptive refines elements [6]. 

Time integration: explicit for non-stiff, 

implicit (BDF) for stiff, multigrid acceleration [2]. 

Integral Equation Solvers 

Volterra IEs use trapezoidal quadrature; 

Fredholm via Nystrom ∑𝑤𝑘𝐾(𝑥𝑘 , 𝑦𝑘)𝑢(𝑦𝑘) =

𝑓(𝑥𝑖). Boundary IEs reduce dimensionality [7]. 

Data-Driven Approaches 

Sparse and Symbolic Regression 

SINDy forms 𝑢̇ = 𝐹𝛯, libraries 𝐹 =

[1, 𝑢, 𝑢2, 𝑠𝑖𝑛⁡ 𝑢, … ], solves 𝛯 = 𝑎𝑟𝑔⁡𝑚𝑖𝑛⁡ ∥ 𝑈̇ −

𝐹𝛯 ∥2
2+ 𝜆 ∥ 𝛯 ∥1. Derivatives via TVD or splines 

handle noise. STRidge iterates 

thresholding+ridge for PDEs. Bayesian variants 

(UQ-SINDy) use spike-slab priors for inclusion 

probabilities [8]. 

Symbolic regression genetically evolves 

trees: fitness MSE on integrated predictions. 

Eureqa partitions variables, probes ICs [7]. 

Neural Network-Based Methods 

PINNs minimize 𝐿 =∥ 𝑢 − 𝑢∗ ∥2 +∥

𝑁[𝑢] ∥2, where 𝑁 is PDE residual, derivatives via 

autodiff. Solves forward/backward without 

mesh [9]. 

Neural ODEs 
𝑑𝑢

𝑑𝑡
= 𝑓𝜃(𝑢, 𝑡), integrate via 

adjoint sensitivity. FNO learns 𝐺(𝑎) = 𝑢 via 

Fourier transforms, mesh-invariant [10]. 

Data-driven discretization: NN predicts 

stencils 𝜕𝑛𝑣/𝜕𝑥𝑛 = ∑𝛼𝑖
𝑛𝑣𝑖, optimized for time 

deriv accuracy on coarse grids from fine data. 

Pseudolinear ensures polynomial order [11]. 
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Category Technique Library/Arch Strengths Comp. Cost 

Classical FDM/WENO  Fixed stencils Stability proofs O(N log N) 

Classical FEM/Galerkin  Basis funcs Adaptive meshes O(N{3/2}) 

Sparse SINDy/SR3  Polynomials Interpretable eqs Low 

Neural PINNs  MLP Mesh-free Train: High, Infer: Low 

Operator FNO  Fourier NN Resolution indep Medium 

Hybrids: NN-denoised derivatives fed to SINDy; 

PSM Bayesian hierarchies [7]. 

Discussion 

Benchmarks and Comparisons 

On Burgers' (viscous shock), classical 

FVM/WENO diverges at 16x coarse (shock 

width unresolved), data-driven NN integrates 

stably, MAE 8x lower (Fig. 3C page:1). KdV 

solitons, KS chaos: NN valid sim time 2-5x longer 

at 8x coarse. 

Lorenz ODEs: SINDy recovers 𝑥̇ = 𝜎(𝑦 −

𝑥) from noisy data, Bayesian UQ-SINDy 

quantifies 95% CIs. Navier-Stokes: PINNs handle 

no-slip BCs, FNO parametric Re [12]. 

IEs: Galerkin exact on smooth kernels; NN 

operators generalize [13]. Classical excel 

interpretability/stability; data-driven 

accuracy/data scarcity (e.g., CFD sims costly, but 

few suffice training). 

Advantages and Limitations 

Classical: Mesh gen, preconditioners needed; 

scale poorly d>2 . 

Data-driven: Black-box risks, train data req 

(10^4-10^6 snapshots), overfitting. Noise 

sensitivity mitigated by GP priors, ensembles . 

Uncertainty: Bootstrap/SR3 for param UQ; full 

Bayesian PSM propagate obs-process errors [7]. 

CFD Apps: Multiphase flows (VOF+level-set), 

renewables (wind turbine wakes): hybrids NN-

subgrid + classical solver [4]. 

Scalability: FNO O(1) eval post-train; quantum 

hybrids for exp large [14]. 

Hybrids and Emerging Trends 

SR3+NN: NN approx u, sparse on 

derivs. Operator inference learns low-rank; 

DLGA-PDE genetic+NN for param PDEs [7]. 

Quantum-classical solvers for linear DEs. Green 

AI: low-data symbolic [14]. Challenges: Provable 

guarantees (neural Tangent Kernel), 

equivariance, multi-fidelity. 

Metric Classical Data-

Driven 

Hybrid 

Accuracy 

(coarse) Low  High Highest 

Interpretability High Low Medium 

Data Req None High Medium 

UQ Analytic Ensemble Bayesian 
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Conclusion 

Classical methods furnish bedrock for 

DE/IE solvers; data-driven unlock coarse, data-

sparse regimes. Hybrids, uncertainty-aware, 

herald CFD revolutions in renewables. Future: 

certified hybrids, 3D operators, physics-

equivariant nets. 
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