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Abstract

Differential and integral equations underpin models in physics, engineering,
and computational fluid dynamics. Classical numerical methods, including
finite differences, finite elements, and collocation schemes, discretize
continuous operators with proven convergence but high computational
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demands for complex geometries or multiscale phenomena. Data-driven

approaches, such as sparse regression (e.g., SINDy), symbolic regression via
genetic programming, and deep learning (e.g., PINNSs, neural operators),
infer governing laws from simulation or observational data, enabling
discovery of unknown dynamics and coarse-graining at reduced resolutions.
This review categorizes methodologies, benchmarks performance on
canonical equations like Burgers' and Navier-Stokes, discusses hybrids for
enhanced robustness, and outlines challenges in uncertainty quantification
and scalability. Hybrids promise interpretable, data-efficient solvers for real-
world applications in renewable energy modeling and multiphase flows.

Keywords: Finite difference methods, Physics-informed neural networks,

Galerkin methods, Sparse identification (SINDy), Neural operators.

Introduction dynamics (CFD) and renewable

simulations [1,2].

energy

Differential equations (DEs) describe

dynamic evolution in systems from fluid flow to Classical methods discretize domains

quantum mechanics, while integral equations
(IEs) model nonlocal interactions like potential
theory. Ordinary DEs (ODEs) govern time-
dependent (PDEs)
incorporate space, and IEs arise in Fredholm or

processes, partial DEs
Volterra forms for inverse problems. Numerical
solution demands balancing accuracy, stability,
and efficiency, especially for nonlinear stiff
systems

prevalent in computational fluid

into grids or mesh, approximating derivatives
via Taylor expansions or weak formulations.
Finite difference methods (FDMs) suit regular
grids, finite element methods (FEMs) irregular
domains, and spectral methods smooth
solutions. For IEs, Nystrom quadrature or
projection methods reduce to DEs. These yield
systems solvable by explicit/implicit time-
stepping like Runge-Kutta or backward Euler,

with error bounds via Lax equivalence theorem:
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consistency plus stability implies convergence
[3].

Data-driven methods emerged post-
2016, fueled by Al advances. Sparse regression
builds candidate libraries (polynomials, trig
functions) and prunes via L1 penalties,
discovering sparse nonlinear laws (SINDy).
Symbolic  regression evolves expressions
genetically. Neural networks parameterize
solutions (Neural ODEs) or operators (FNO),
embedding PDE residuals in losses for mesh-free
solving. Data-driven discretization learns stencil
coefficients from high-res data, achieving 4-8x

coarser grids without divergence [2].

This review structures as: Methodology

details classical and data-driven solvers;
Discussion compares via benchmarks, hybrids;
Conclusion charts paths forward. Emphasis lies
on CFD relevance, aligning with multiphase flow

and sustainability modelling [4].

Methodology

Classical Approaches

Finite Difference and Finite Volume Methods

FDMs

Uit1—Uj—1 for

approximate derivatives:

central first-order, higher via

stencils. For hyperbolic PDEs like advection u, +
au, = 0, upwind schemes ensure CFL stability |
aldt/Ax < 1. volume

Finite conserves

fluxes: %u'i = M, with Riemann solvers
for shocks (Godunov). WENO adaptively
weights ~ smooth  stencils,  suppressing

oscillations.[ 5]

For  viscous  Burgers' v, + (v*/2 —
vy =f, FVM

resolving shocks at width ~ 7. Navier-Stokes

integrates cell averages,

extends via projection methods decoupling
velocity-pressure [2].

Finite Element and Galerkin Methods

FEMs minimize residuals in weak
form: [ Vu - Vv = [ fv, yielding sparse matrices
solved by CG. For IEs, Galerkin projects kernels
onto bases, e.g., discrete Y¢;(x)K (x, y)u(y)dy =
f(x). hp-adaptive refines elements [6].

Time integration: explicit for non-stiff,
implicit (BDF) for stiff, multigrid acceleration [2].
Integral Equation Solvers

Volterra IEs use trapezoidal quadrature;

Nystrom Ywi K (xi, i )u(yy) =
f(x;). Boundary IEs reduce dimensionality [7].

Fredholm via

Data-Driven Approaches
Sparse and Symbolic Regression

SINDy libraries F =

[1,u,u?sin u,.. ],

forms u = F&,

solves £ = arg min || U —
FE I3+ 2 |l £ Il;. Derivatives via TVD or splines
handle STRidge
thresholding+ridge for PDEs. Bayesian variants

noise. iterates
(UQ-SINDy) use spike-slab priors for inclusion
probabilities [8].

Symbolic regression genetically evolves
trees: fitness MSE on integrated predictions.
Eureqa partitions variables, probes ICs [7].

Neural Network-Based Methods

PINNs minimize L =[l u —u* |12 +Il
N[u] II?, where N is PDE residual, derivatives via
autodiff. Solves forward/backward without

mesh [9].

Neural ODEs % = fp(u,t), integrate via

adjoint sensitivity. FNO learns G(a) = u via
Fourier transforms, mesh-invariant [10].

Data-driven discretization: NN predicts
stencils 0"v/0x™ = Ya'v;, optimized for time
deriv accuracy on coarse grids from fine data.
Pseudolinear ensures polynomial order [11].
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Category Technique Library/Arch Strengths Comp. Cost

Classical FDM/WENO Fixed stencils Stability proofs O(N log N)

Classical FEM/Galerkin Basis funcs Adaptive meshes | O(N®©/2})

Sparse SINDy/SR3 Polynomials Interpretable eqs Low

Neural PINNs MLP Mesh-free Train: High, Infer: Low
Operator FNO Fourier NN Resolution indep | Medium

Hybrids: NN-denoised derivatives fed to SINDy;
PSM Bayesian hierarchies [7].

Discussion
Benchmarks and Comparisons

On Burgers' (viscous shock), classical
FVM/WENO diverges at 16x coarse (shock
width unresolved), data-driven NN integrates
stably, MAE 8x lower (Fig. 3C page:1). KdV
solitons, KS chaos: NN valid sim time 2-5x longer
at 8x coarse.

Lorenz ODEs: SINDy recoversx = o(y —
x) from noisy data, Bayesian UQ-SINDy
quantifies 95% Cls. Navier-Stokes: PINNs handle

Uncertainty: Bootstrap/SR3 for param UQ; full
Bayesian PSM propagate obs-process errors [7].

CFD Apps: Multiphase flows (VOF+level-set),
renewables (wind turbine wakes): hybrids NN-
subgrid + classical solver [4].

Scalability: FNO O(1) eval post-train; quantum
hybrids for exp large [14].

Hybrids and Emerging Trends

SR3+NN: NN approx u, sparse on
derivs. Operator inference learns low-rank;
DLGA-PDE genetictNN for param PDEs [7].
Quantum-classical solvers for linear DEs. Green
Al: low-data symbolic [14]. Challenges: Provable

no-slip BCs, FNO parametric Re [12]. guarantees (neural Tangent Kernel),
IEs: Galerkin exact on smooth kernels; NN equivariance, multi-fidelity.

?perators - generah%e- [13]. Classical e'xcel Metric Classical | Data- Hybrid
interpretability / stability; data-driven Driven
accuracy/data scarcity (e.g., CFD sims costly, but

few sulffice training). Accuracy

Advantages and Limitations (coarse) Low High Highest
Classical: Mesh gen, preconditioners needed; Interpretability | High Low Medium
scale poorly d>2 .

Data-driven: Black-box risks, train data req Data Req None High Medium
1074-1076 hots), fitting.  Noi

( . '?naps ots) OYer Hng ose uQ Analytic | Ensemble | Bayesian
sensitivity mitigated by GP priors, ensembles .
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Conclusion

Classical methods furnish bedrock for

DE/IE solvers; data-driven unlock coarse, data-

sparse regimes. Hybrids, uncertainty-aware,

herald CFD revolutions in renewables. Future:

certified hybrids, 3D

operators, physics-

equivariant nets.
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