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Abstract 

Molecular dynamics (MD) simulations have become an essential 

computational framework for examining the structure-property relationships 

of carbon-based nanomaterials in energy storage applications. This thorough 

review brings together the most recent (2020–2024) improvements in MD 

methods for predicting the mechanical strength, thermal conductivity, and 

atomic-level interactions of graphene, carbon nanotubes, and their 

derivatives. Pristine graphene has amazing mechanical properties, with a 

Young's modulus of 1.0 TPa and a tensile strength of 130 GPa. The thermal 

conductivity values range from 2900 to 5000 W/m·K, depending on the 

quality of the sample and the conditions at the boundary. One important 

thing that this review found is that choosing the right interatomic potential 

can change predictions of thermal conductivity by as much as four times. 

Optimised Tersoff potentials are better for phonon transport, while AIREBO 

is still the best choice for fracture mechanics. Machine learning potentials, 

especially GAP-20, now reach over 95% of density functional theory accuracy 

at a much lower cost of computation. MD simulations show that carbon 

nanotubes with titanium on them can store hydrogen at a rate of 8.04 wt% at 

77 K. The lithium diffusion coefficients in graphite range from 10⁻⁶ to 10⁻¹¹ 

cm²/s, depending on the pathway of diffusion. Defect concentrations as low 

as 0.1% can cut thermal conductivity by 83%. This shows how important it is 

to engineer defects. This review highlights significant research deficiencies, 

including multiscale bridging methodologies, reactive potentials for solid-

electrolyte interfaces, and standardised validation protocols crucial for the 

progression of computational design in next-generation energy storage 

materials. 
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1. Introduction 

The world needs big changes in energy 

storage technologies that can support 

intermittent renewable sources, electric 

transportation, and grid-scale applications [1-3]. 

Carbon-based nanomaterials have become 

essential for the next generation of energy 

storage devices because they have a unique 

combination of properties that make them good 

at conducting electricity, being strong, and being 

stable in chemicals [4–6]. Graphene has the 

highest known thermal conductivity (about 5000 

W/m·K), the best electron mobility (200,000 

cm²/V·s), and the best mechanical strength 

(Young's modulus of 1 TPa) [7-9]. Carbon 

nanotubes (CNTs), including both single-walled 

and multi-walled types, enhance these 

characteristics with their high aspect ratios, 

which allow for effective reinforcement and 

unique one-dimensional transport phenomena 

[10–12]. 

Molecular dynamics simulation has 

emerged as the foremost computational 

technique for examining atomic-scale 

phenomena that influence macroscopic material 

behaviour [13-15]. MD explicitly resolves 

individual atomic trajectories through numerical 

integration of Newton's equations of motion, 

capturing intrinsic length scales, thermal 

fluctuations, and defect interactions inaccessible 

to experimental characterisation, unlike 

continuum approaches that treat materials as 

homogeneous media [16,17]. The exponential 

growth of computational resources, along with 

improvements in parallelisation and machine 

learning algorithms, has made MD able to handle 

billions of atoms instead of just thousands. This 

has closed the gap between basic quantum 

mechanical descriptions and predictions on an 

engineering scale [18–20]. 

 Using MD simulations on carbon 

nanomaterials for energy storage answers a 

number of important scientific questions. First, 

how do atomic-level defects, which are common 

in synthesised materials, affect mechanical 

integrity and thermal transport in a measurable 

way? Second, what are the basic processes that 

control ion diffusion, intercalation, and charge 

storage in carbon electrodes? Third, how can 

computer-based predictions help us design 

carbon-based composites with the best possible 

multifunctional properties? This review 

methodically addresses these enquiries through 

an extensive analysis of contemporary literature 

concerning mechanical properties, thermal 

conductivity, interatomic potential 

development, and particular energy storage 

applications [21-24]. 

This review examines MD simulation studies 

published from 2020 to 2024, concentrating on 

carbon allotropes such as graphene (both 

monolayer and multilayer), carbon nanotubes 

(single-walled and multi-walled), graphite, and 

functionalised derivatives. Lithium-ion battery 

anodes, supercapacitor electrodes, hydrogen 

storage media, and thermal management 

materials are all examples of energy storage 

applications that are specifically mentioned. The 

review is structured as follows: Section 2 

delineates computational methodologies 

encompassing simulation frameworks and 

analytical techniques; Section 3 scrutinises 

predictions of mechanical properties; Section 4 

tackles calculations of thermal conductivity; 

Section 5 rigorously assesses interatomic  
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Figure 1: Molecular Dynamics simulation framework for carbon-based materials showing the iterative 

computational workflow including system initialization, force calculation, integration, property evaluation, and 

analysis stages. 

potentials; Section 6 explores energy storage 

applications; Section 7 delineates prospective 

research trajectories; and Section 8 offers 

concluding observations [25-27]. 

2. Computational Methodology 

2.1 Molecular Dynamics Simulation Framework 

The basic idea behind molecular 

dynamics simulation is to solve Newton's 

equations of motion for a group of N particles 

that are interacting with each other. The force on 

each atom comes from the gradient of an 

interatomic potential energy function [28,29]. 

The temporal evolution of atomic positions and 

velocities is achieved through numerical 

integration algorithms, with the velocity Verlet 

scheme being the most commonly used method 

due to its symplectic characteristics that maintain 

phase space volume and demonstrate 

exceptional energy conservation [30]. For 

empirical potentials, carbon simulations usually 

have time steps between 0.5 and 1.0 

femtoseconds. This makes sure that high-

frequency C-C bond vibrations with periods of 

about 30 fs are accurately resolved [31,32]. 

The Large-scale Atomic/Molecular 

Massively Parallel Simulator (LAMMPS) is the 

most popular tool for carbon MD simulations. It 

uses the MANYBODY package (Tersoff, 

AIREBO, REBO, LCBOP) and the REAXFF 

module for reactive chemistry to provide the best 

implementations of important interatomic 

potentials [33,34]. Using the KOKKOS package to 

speed up GPU execution can make it 2 to 8 times 

faster than CPU-only execution. The NVIDIA 

H100 architecture shows big improvements, 

especially for Tersoff and ReaxFF calculations 

[35]. Alternative codes, such as GROMACS, are 

used in carbon-polymer composite systems 

where classical force fields can accurately 

describe interactions that aren't bonded [36,37].
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Figure 2: Carbon nanostructures for energy storage applications: (a) Graphene sheet with sp² hybridized carbon 

atoms in honeycomb lattice, (b) Single-walled carbon nanotube with helical atomic arrangement, (c) Graphite 

layers with AB stacking and 3.35 Å interlayer spacing. 

2.2 Statistical Ensembles and Thermostats 

Statistical mechanical ensembles 

delineate the macroscopic constraints governing 

the evolution of simulations. The microcanonical 

(NVE) ensemble keeps the total energy the same, 

which lets us check the accuracy of integration by 

watching for energy drift. Drift rates that are less 

than 0.01% over production runs are acceptable 

[38]. The canonical (NVT) ensemble keeps the 

temperature steady by connecting thermostats. 

The Nosé-Hoover chain method is the best way 

to do this for production simulations because it 

makes sure that the canonical sampling is correct 

and doesn't cause the flying ice cube artefact that 

happens when you change the speed [39,40]. The 

isothermal-isobaric (NPT) ensemble also controls 

pressure, which is important for studying phase 

transitions and finding equilibrium lattice 

parameters. However, two-dimensional 

materials like graphene need to have their out-of-

plane dimension limited to stop them from 

collapsing in an unphysical way [41,42]. 

Table 1: Recommended MD Simulation Parameters for Carbon Nanomaterials 

Parameter Mechanical Thermal Diffusion Reference 

Time step 

(fs) 

1.0 0.5 1.0 [31,32] 

Minimum 

atoms 

2,000-5,000 5,000-50,000 1,000-10,000 [43,44] 

Productio

n time 

(ns) 

1-10 10-50 1-100 [45,46] 

Ensemble NVT/NPT NVE/NVT NVT [38-42] 

Thermost

at 

Nosé-Hoover Nosé-Hoover Nosé-Hoover [39,40] 
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3. Mechanical Properties from MD Simulations 

3.1 Elastic Constants and Tensile Strength 

Molecular dynamics simulations 

consistently indicate remarkable mechanical 

properties for pristine carbon nanomaterials, 

positioning them among the strongest known 

substances. Graphene's Young's modulus values 

range from 0.83 to 1.05 TPa, depending on the 

conditions of the simulation and the choice of 

potential. This is very close to the experimental 

benchmark of 1.0 ± 0.1 TPa set by Lee et al. 

through atomic force microscopy 

nanoindentation [47-49]. Predictions for tensile 

strength range from 93 to 137 GPa, with a lot of 

directional anisotropy. For example, loading in a 

zigzag pattern gives higher strength (106-137 

GPa) and fracture strain (0.20-0.27) than loading 

in an armchair pattern (93-105 GPa, strain 0.14-

0.17). This is because of the symmetry of the 

lattice and the orientation of the bonds [50-52]. 

Through a combination of experiments 

and computer simulations, it has been shown 

that graphene has a fracture toughness of 4.4 

MPa·√m. The ratio Gc(armchair)/Gc(zigzag) = 

0.94 shows that the material is weakly 

anisotropic [53,54]. Single-walled carbon 

nanotubes have Young's moduli of 1.0–1.2 TPa 

and theoretical tensile strengths of 94–126 GPa, 

depending on their chirality and diameter 

[55,56]. However, the measured strengths of 

synthesised samples with defects drop a lot, from 

13 to 53 GPa for individual SWCNTs to 34.65 GPa 

for millimeter-long MWCNT bundles [57,58].

 

Figure 3: Mechanical properties of carbon nanomaterials from MD simulations: (a) Young's modulus 

comparison across different carbon structures, (b) Temperature dependence of tensile strength showing thermal 

softening behavior. 

3.2 Temperature and Strain Rate Effects 

Temperature significantly impacts 

mechanical behaviour via thermally activated 

processes that influence bond stability and defect 

mobility. The strength of polycrystalline 

graphene diminishes by about 45% from 100 K to 

1200 K, with a transition from brittleness to 

plasticity occurring above 1000 K, where 

increased atomic mobility facilitates dislocation-

mediated deformation [59,60]. The temperature 

coefficient of Young's modulus shows a weak 

dependence, dropping by 5–10% for every 500 K 

rise in temperature. This is because sp² carbon 

has stiff covalent bonds [61,62]. 

Strain rate sensitivity poses 

methodological difficulties, as molecular 

dynamics simulations utilise rates (10⁷-10¹⁰ s⁻¹) 

that are orders of magnitude greater than those 

in experimental conditions (10⁻³-10⁰ s⁻¹). 

Systematic studies show that zigzag orientations 

are more sensitive to strain rates than armchair 

configurations. For example, in polycrystalline 

http://www.ijoer.in/


International Journal of Engineering Research-Online  
A Peer Reviewed International Journal   

ISSN: 2321-7758             http://www.ijoer.in    editorijoer@gmail.com 

Vol.14., S1, 2026 
January    

 

198 Dr. Kandula Anjaneyulu & Kanta Jayadev 
 

 

graphene at 300 K, the strength increases by 10% 

when the strain rate goes from 5×10⁻⁵ to 5×10⁻³ 

ps⁻¹ [63,64]. Transition state theory and 

accelerated MD methods are two ways to try to 

fill this gap in time scales, but it is still hard to 

prove that they work [65,66]. 

Table 2: Mechanical Properties of Carbon Nanomaterials from MD Simulations 

Material E (GPa) σ (GPa) ε_f Potential Ref. 

Graphene 

(armchair) 

890-961 93-105 0.14-0.17 AIREBO [47-50] 

Graphene 

(zigzag) 

830-911 106-137 0.20-0.27 AIREBO [47-50] 

SWCNT 

(10,10) 

1000-1200 94-126 0.15-0.20 Tersoff [55-58] 

Polycrystalline 

(10 nm) 

~800 ~50 ~0.08 AIREBO [59,60] 

Graphene (1% 

vacancy) 

~850 ~90 ~0.12 AIREBO [67,68] 

4. Thermal Conductivity Calculations 

4.1 Computational Methods 

There are two very different ways to 

predict thermal conductivity using molecular 

dynamics, each with its own strengths and 

weaknesses [69,70]. The equilibrium molecular 

dynamics (EMD) method, which is based on the 

Green-Kubo formalism, calculates thermal 

conductivity by taking the time integral of heat 

flux autocorrelation functions in equilibrium. 

This method has less of an effect on finite size 

than non-equilibrium methods, and it naturally 

captures the full tensor character of anisotropic 

conductivity, which makes it better for 

determining bulk properties [71,72]. However, 

convergence problems come up because heat 

flux in materials with high conductivity, like 

graphene, takes a long time to decorrelate. This 

means that simulations have to run for more than 

100 ps and be carefully analysed statistically 

[73,74]. 

Non-equilibrium molecular dynamics 

(NEMD) techniques apply temperature 

gradients through thermostatted boundary 

regions, quantifying steady-state heat flux to 

ascertain conductivity in accordance with 

Fourier's law [75,76]. The reverse NEMD method 

by Müller-Plathe is more stable because it moves 

kinetic energy between hot and cold areas, which 

causes temperature gradients instead of forcing 

them [77]. NEMD methods are great for looking 

at interfacial thermal resistance (Kapitza 

resistance) because they let you see how 

temperature profiles change in space, which 

gives you direct access to interface contributions. 

However, system size effects need to be carefully 

corrected by extrapolating to infinite length 

[78,79].
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Figure 4: Thermal conductivity analysis: (a) Comparison of MD computational methods including Green-Kubo 

equilibrium MD and non-equilibrium approaches, (b) Thermal conductivity predictions at 300 K compared with 

experimental measurements. 

4.2 Thermal Conductivity Results 

Graphene has the highest thermal 

conductivity of any known material. Balandin 

and his coworkers measured suspended samples 

at room temperature and found values between 

4840 and 5300 W/m·K [80]. MD simulations 

utilising optimised Tersoff potentials forecast 

values of 2903 ± 93 W/m·K through EMD 

methods, indicating a reasonable concordance 

considering the sensitivity to simulation 

parameters and finite-size effects. Substrate-

supported graphene exhibits significantly 

diminished conductivity, approximately 600 

W/m·K, attributed to phonon scattering at the 

interface, a prediction robustly corroborated by 

experimental data. 

The transition between ballistic and 

diffusive transport regimes, which is important 

for managing the heat of nanostructures, is 

controlled by phonon mean free paths. 

Suspended graphene has mean free paths of 

about 240 nm at room temperature, which allows 

for quasi-ballistic transport in samples that are 

shorter than this length. Quarter-micron samples 

attain roughly 35% of the ballistic thermal 

conductance limit, illustrating the practical 

significance of finite-size effects. Carbon 

nanotubes show similar thermal conductivity, 

with defect-free SWCNTs having values over 

3000 W/m·K. The strong dependence on 

diameter and chirality shows how phonons 

move in one dimension. 

5. Interatomic Potentials for Simulating Carbon 

Choosing the right interatomic potential 

is probably the most important methodological 

choice in carbon MD simulations. The wrong 

choice can change thermal conductivity 

predictions by up to four times and have a huge 

effect on how materials fail mechanically. This 

section critically assesses the principal potential 

families and nascent machine learning 

methodologies

http://www.ijoer.in/


International Journal of Engineering Research-Online  
A Peer Reviewed International Journal   

ISSN: 2321-7758             http://www.ijoer.in    editorijoer@gmail.com 

Vol.14., S1, 2026 
January    

 

200 Dr. Kandula Anjaneyulu & Kanta Jayadev 
 

 

 

Figure 5: Interatomic potentials for carbon MD simulations: (a) Radar chart comparing potential performance 

across multiple criteria, (b) Accuracy versus computational cost trade-off showing the Pareto frontier 

5.1 Empirical Bond-Order Potentials 

The Tersoff potential and its derivatives 

are still very important for carbon simulations. 

They show the potential energy as a sum of 

pairwise interactions that is changed by a bond-

order term that shows the local coordination 

environment. Lindsay and Broido's (2010) 

optimised Tersoff parameterisation give the best 

predictions for the thermal conductivity of 

graphene and CNTs. It accurately reproduces 

phonon dispersion relations and the inverse-

square frequency dependence of phonon 

lifetimes. Standard Tersoff potentials, on the 

other hand, don't take into account long-range 

interactions and can't explain how bonds break 

and form during a fracture. 

The Adaptive Intermolecular Reactive 

Empirical Bond Order (AIREBO) potential 

enhances REBO by incorporating torsional 

interactions and Lennard-Jones terms for non-

bonded interactions, facilitating the simulation 

of multi-layer graphene and polymer 

composites. AIREBO does a better job of 

predicting how materials will break than other 

methods, with a Young's modulus of about 910 

GPa. However, it greatly underestimates thermal 

conductivity because its acoustic phonon modes 

are too soft. The switching function used to break 

bonds causes unrealistic force spikes at 

intermediate bond distances. This led to the 

development of screened Tersoff variants 

(Tersoff-S) that make failure happen more 

smoothly. 

5.2 Machine Learning Potentials 

Machine learning interatomic potentials signify a 

revolutionary progression, attaining near-

quantum mechanical precision at computational 

expenses suitable for extensive molecular 

dynamics simulations. Csányi and his team 

created the Gaussian Approximation Potential 

(GAP) framework, which uses smooth overlap of 

atomic positions (SOAP) descriptors with 

Gaussian process regression to get energy root-

mean-square errors of about 10 meV/atom. The 

carbon GAP-20 potential, which was trained on 

16,906 density functional theory configurations 

that included bulk phases, defects, and 

amorphous structures, gets more than 95% of the 

DFT cohesive energy accuracy and lets you run 

nanosecond simulations of million-atom 

systems. 

The Spectral Neighbour Analysis 

Potential (SNAP) is a different way to use 

machine learning that works well in very harsh 

conditions. The carbon SNAP potential allows 

for simulations at 5 TPa pressure and 20,000 K 

temperature, with phase diagram accuracy 

within 3% of quantum molecular dynamics. This 

enables billion-atom simulations pertinent to 
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shock physics and planetary interior conditions. 

Neural network potentials like DeepMD and 

MACE provide more Pareto-optimal accuracy-

speed trade-offs for certain uses. Active learning 

workflows (DP-GEN) automate the process of 

making training sets. 

Table 3: Interatomic Potential Performance Comparison 

Potential κ Accuracy E Accuracy Reactivity Relative Cost Best Use 

opt-Tersoff Excellent Good No 0.5× Thermal 

AIREBO Underest. Good Yes 1× Fracture 

ReaxFF Variable Moderate Yes (QEq) 5-10× Chemistr

y 

GAP-20 Good Excellent Yes 100× High 

accuracy 

SNAP Excellent Good Yes 50× Extreme 

P,T 

6. Energy Storage Applications 

Molecular dynamics simulations illuminate 

atomic-scale mechanisms underlying 

macroscopic energy storage performance across 

multiple device architectures including lithium-

ion batteries, supercapacitors, hydrogen storage 

systems, and thermal management materials. 

 

Figure 6: MD simulations for carbon-based energy storage systems showing four primary application domains: 

lithium-ion battery anodes, supercapacitors, hydrogen storage, and thermal management materials. 

6.1 Lithium-Ion Battery Anodes 

Graphite is still the most common anode 

material in commercial lithium-ion batteries. 

Lithium intercalation between graphene layers 

gives the battery a reversible capacity of 372 

mAh/g, which is equal to the LiC₆ stoichiometry. 

MD simulations show that lithium diffusion 

coefficients can be anywhere from 10⁻⁶ to 10⁻¹⁶ 

cm²/s, depending on the method and the path of 

diffusion. In-plane diffusion parallel to graphene 

sheets attains rates of 10⁻⁷ to 10⁻⁶ cm²/s, whereas 

cross-plane diffusion through grain boundaries 

decreases to about 10⁻¹¹ cm²/s, elucidating rate 

limitations in polycrystalline materials. 

Silicon-graphene composites solve the problem 

of graphite's limited theoretical capacity by 

adding silicon, which has an amazing capacity of 

3,579 mAh/g. MD simulations show that 
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graphene coatings cut silicon's huge volume 

expansion from 300–400% to about 67%, which 

slows down the mechanical degradation that 

causes capacity fade. Machine learning-driven 

MD finds that the amorphous silicon/graphite-I 

interface has the fastest lithiation rate, which 

helps optimise composite design. The Young's 

modulus of silicon diminishes from 100 GPa to 

41 GPa during the transition to the Li₁₅Si₄ phase, 

elucidating the mechanisms of mechanical 

degradation. 

6.2 Storing Hydrogen 

The storage of hydrogen in carbon 

nanostructures has been systematically assessed 

through molecular dynamics and Monte Carlo 

simulations, focussing on the U.S. The 

Department of Energy's goal for practical 

vehicular uses is 6.5 wt% [128,129]. 

Physisorption in pristine CNTs meets this goal in 

wide-diameter open SWCNTs at 160 bar and 298 

K. In cryogenic conditions (77 K), it can store up 

to 33 wt% for widely spaced narrow tubes. Metal 

decoration greatly improves storage: titanium-

doped (12,12) CNTs reach 8.04 wt% at 77 K with 

5% Ti doping—about four times more than 

undoped tubes—and keep more than 90% of 

their capacity after 100 cycles of adsorption and 

desorption. 

6.3 Managing Heat 

Thermal management simulations show 

that graphene could make batteries safer by 

helping them get rid of heat more quickly. 

Graphene-paraffin composites with 1 wt% 

graphene loading exhibit a 60-fold enhancement 

in thermal conductivity relative to unmodified 

paraffin phase change materials. Hyperbolic 

graphene-paraffin structures at 12.5 wt% reach a 

record 30.75 W/m·K while keeping 90% of their 

latent heat capacity. This makes it possible to 

stop thermal runaway at discharge rates of 3.75C. 

These materials keep the battery temperature 

stable at about 42°C phase transition points for 

more than 10,000 cycles.

 

Figure 7: Impact of defects on carbon nanomaterial properties: (a) Property degradation with increasing vacancy 

concentration showing dramatic thermal conductivity reduction, (b) Comparison of property reduction by 

different defect types at 1% concentration. 
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Table 4: MD-Predicted Energy Storage Performance Parameters 

Application Material Performance 

Li-ion anode Graphite D_Li: 10⁻⁷-10⁻⁶ cm²/s 

Li-ion anode Si-graphene 67% volume expansion 

H₂ storage Ti-CNT (5%) 8.04 wt% at 77 K 

Supercapacitor Carbide-derived C ~9 μF/cm² 

Thermal mgmt. Graphene-PCM 30.75 W/m·K 

7. Future Research Directions 

To make MD simulations more useful 

for designing materials for energy storage, there 

are a few important research gaps that need to be 

filled. First, the multiscale connection between 

atomistic MD (nanometre, nanosecond scales) 

and continuum models (device scale) is still not 

fully developed. The smoothed MD and 

Arlequin methods show promise, but there aren't 

any standard implementations of them yet. 

Second, most simulations use simplified defect 

structures, but real CVD-grown samples have 

complicated defect distributions that need 

stochastic defect modelling methods. 

 

Figure 8: Future research directions in MD simulations for carbon energy materials showing the roadmap from 

2024-2028 including machine learning potentials, multiscale bridging, solid 

electrolyte interfaces, and beyond-lithium systems. 

Third, MD timescales (nanoseconds) 

cannot accurately represent the realistic 

dynamics of battery charge and discharge 

(seconds to hours), necessitating accelerated 

sampling techniques such as parallel replica 

dynamics, metadynamics, and kinetic Monte 

Carlo coupling. Fourth, the force fields for solid-

electrolyte interfaces that are important for solid-

state batteries are not as well-defined as those for 

liquid electrolyte systems. This means that they 

need to be systematically developed and tested. 

Fifth, beyond-lithium systems that use carbon 

anodes and sodium, potassium, magnesium, and 

aluminium ions need systematic force field 

development that has been tested against 

experimental benchmarks.  
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Machine learning potentials fix 

problems with accuracy, but they also create new 

problems, such as how to generalise training sets, 

how to measure uncertainty, and how to break 

bonds accurately. Active learning workflows 

automate the creation of training sets, but they 

need to be carefully checked for certain target 

properties. Combining machine learning with 

reactive potentials for forming and breaking 

down solid-electrolyte interfaces is a very 

promising area of research that could lead to 

predictive simulations of how batteries age. 

8. Conclusions 

This thorough review shows that 

molecular dynamics simulation is a well-

established and important way to use computers 

to predict the properties of carbon nanomaterials 

that are important for energy storage 

applications. The synthesis of literature from 

2020-2024 uncovers several significant findings. 

Pristine graphene has amazing mechanical 

properties, with a Young's modulus of 1.0 TPa 

and thermal conductivity of 5000 W/m·K for 

suspended samples. However, defect 

concentrations as low as 0.1% can lower thermal 

conductivity by 83%, which shows how 

important defect engineering is. Second, 

choosing interatomic potentials can change 

predictions of thermal conductivity by up to four 

times. Optimised Tersoff potentials are better for 

phonon transport, while AIREBO is still the best 

choice for fracture mechanics simulations. 

Third, machine learning potentials like 

GAP-20 and SNAP now reach more than 95% of 

the accuracy of density functional theory at a 

much lower cost, making large-scale simulations 

possible that quantum mechanical methods 

couldn't handle before. Fourth, MD simulations 

show that titanium-coated carbon nanotubes can 

store 8.04 wt% of hydrogen at 77 K, which is 

more than the DOE's goals. Also, lithium 

diffusion coefficients in graphite electrodes can 

vary by six orders of magnitude depending on 

the diffusion pathway. Fifth, graphene-based 

phase change composites have thermal 

conductivities of 30.75 W/m·K while keeping 

their latent heat capacity, which makes them 

good for battery safety. 

Important areas of research that need 

more work include creating standardised 

validation protocols, multiscale bridging 

methods that connect atomistic and continuum 

descriptions, reactive force fields for solid-

electrolyte interfaces, and systematic force field 

development for battery chemistries that go 

beyond lithium. The ongoing fusion of machine 

learning techniques with conventional molecular 

dynamics methods is expected to expedite the 

computational discovery of materials for next-

generation energy storage systems. To fully 

realise the potential of MD simulation for 

rational material design, future progress will 

require coordinated efforts that include 

developing algorithms, building high-

performance computing infrastructure, and 

systematically validating experiments. 
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