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Abstract

Molecular dynamics (MD) simulations have become an essential
computational framework for examining the structure-property relationships
of carbon-based nanomaterials in energy storage applications. This thorough
review brings together the most recent (2020-2024) improvements in MD

INTERNATIONAL JOURNAL OF
ENGINEERING RESEARCH-ONLINE

methods for predicting the mechanical strength, thermal conductivity, and

atomic-level interactions of graphene, carbon nanotubes, and their
derivatives. Pristine graphene has amazing mechanical properties, with a
Young's modulus of 1.0 TPa and a tensile strength of 130 GPa. The thermal
conductivity values range from 2900 to 5000 W/m K, depending on the
quality of the sample and the conditions at the boundary. One important
thing that this review found is that choosing the right interatomic potential
can change predictions of thermal conductivity by as much as four times.
Optimised Tersoff potentials are better for phonon transport, while AIREBO
is still the best choice for fracture mechanics. Machine learning potentials,
especially GAP-20, now reach over 95% of density functional theory accuracy
at a much lower cost of computation. MD simulations show that carbon
nanotubes with titanium on them can store hydrogen at a rate of 8.04 wt% at
77 K. The lithium diffusion coefficients in graphite range from 107° to 10711
cm?/s, depending on the pathway of diffusion. Defect concentrations as low
as 0.1% can cut thermal conductivity by 83%. This shows how important it is
to engineer defects. This review highlights significant research deficiencies,
including multiscale bridging methodologies, reactive potentials for solid-
electrolyte interfaces, and standardised validation protocols crucial for the
progression of computational design in next-generation energy storage
materials.

Keywords: Molecular dynamics, Carbon nanomaterials, Graphene, Carbon
nanotubes, Thermal conductivity, Mechanical properties, Energy storage,
Interatomic potentials, AIREBO, Machine learning potentials.
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1. Introduction

The world needs big changes in energy

storage technologies that can support

intermittent renewable  sources, electric
transportation, and grid-scale applications [1-3].
Carbon-based nanomaterials have become
essential for the next generation of energy
storage devices because they have a unique
combination of properties that make them good
at conducting electricity, being strong, and being
stable in chemicals [4-6]. Graphene has the
highest known thermal conductivity (about 5000
W/m K), the best electron mobility (200,000
cm?/Vs), and the best mechanical strength
(Young's modulus of 1 TPa) [7-9]. Carbon
nanotubes (CNTs), including both single-walled
types, these

characteristics with their high aspect ratios,

and multi-walled enhance
which allow for effective reinforcement and
unique one-dimensional transport phenomena
[10-12].

Molecular dynamics simulation has

emerged as the foremost computational

technique  for  examining  atomic-scale
phenomena that influence macroscopic material
[13-15]. MD

individual atomic trajectories through numerical

behaviour explicitly resolves
integration of Newton's equations of motion,

capturing intrinsic length scales, thermal
fluctuations, and defect interactions inaccessible
to  experimental characterisation, unlike
continuum approaches that treat materials as
homogeneous media [16,17]. The exponential
growth of computational resources, along with
improvements in parallelisation and machine
learning algorithms, has made MD able to handle
billions of atoms instead of just thousands. This

has closed the gap between basic quantum

mechanical descriptions and predictions on an
engineering scale [18-20].

Using MD simulations on carbon
nanomaterials for energy storage answers a
number of important scientific questions. First,
how do atomic-level defects, which are common
in synthesised materials, affect mechanical
integrity and thermal transport in a measurable
way? Second, what are the basic processes that
control ion diffusion, intercalation, and charge
storage in carbon electrodes? Third, how can
computer-based predictions help us design
carbon-based composites with the best possible
multifunctional  properties?  This review
methodically addresses these enquiries through
an extensive analysis of contemporary literature
thermal

concerning mechanical properties,

conductivity, interatomic potential
development, and particular energy storage

applications [21-24].

This review examines MD simulation studies
published from 2020 to 2024, concentrating on
carbon allotropes such as graphene (both
monolayer and multilayer), carbon nanotubes
(single-walled and multi-walled), graphite, and
functionalised derivatives. Lithium-ion battery
anodes, supercapacitor electrodes, hydrogen
storage media, and thermal management
materials are all examples of energy storage
applications that are specifically mentioned. The
review is structured as follows: Section 2
delineates

computational methodologies

encompassing simulation frameworks and
analytical techniques; Section 3 scrutinises
predictions of mechanical properties; Section 4
tackles calculations of thermal conductivity;

Section 5 rigorously assesses interatomic
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Figure 1: Molecular Dynamics simulation framework for carbon-based materials showing the iterative
computational workflow including system initialization, force calculation, integration, property evaluation, and

analysis stages.

potentials; Section 6 explores energy storage
applications; Section 7 delineates prospective
research trajectories; and Section 8 offers
concluding observations [25-27].

2. Computational Methodology
2.1 Molecular Dynamics Simulation Framework

The basic idea
dynamics simulation is to solve Newton's

behind molecular

equations of motion for a group of N particles
that are interacting with each other. The force on
each atom comes from the gradient of an
interatomic potential energy function [28,29].
The temporal evolution of atomic positions and
velocities is achieved through numerical
integration algorithms, with the velocity Verlet
scheme being the most commonly used method
due to its symplectic characteristics that maintain
volume and demonstrate

phase  space

exceptional energy conservation [30]. For

empirical potentials, carbon simulations usually

and 1.0
femtoseconds. This makes sure that high-

have time steps between 0.5
frequency C-C bond vibrations with periods of

about 30 fs are accurately resolved [31,32].

The Large-scale Atomic/Molecular
Massively Parallel Simulator (LAMMPS) is the
most popular tool for carbon MD simulations. It
uses the MANYBODY package (Tersoff,
AIREBO, REBO, LCBOP) and the REAXFF
module for reactive chemistry to provide the best
implementations of important interatomic
potentials [33,34]. Using the KOKKOS package to
speed up GPU execution can make it 2 to 8 times
faster than CPU-only execution. The NVIDIA
H100 architecture shows big improvements,
especially for Tersoff and ReaxFF calculations
[35]. Alternative codes, such as GROMACS, are
used in carbon-polymer composite systems
where classical force fields can accurately
describe interactions that aren't bonded [36,37].
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Figure 2: Carbon nanostructures for energy storage applications: (a) Graphene sheet with sp? hybridized carbon
atoms in honeycomb lattice, (b) Single-walled carbon nanotube with helical atomic arrangement, (c) Graphite

layers with AB stacking and 3.35 A interlayer spacing.

2.2 Statistical Ensembles and Thermostats

Statistical mechanical ensembles
delineate the macroscopic constraints governing
the evolution of simulations. The microcanonical
(NVE) ensemble keeps the total energy the same,
which lets us check the accuracy of integration by
watching for energy drift. Drift rates that are less
than 0.01% over production runs are acceptable
[38]. The canonical (NVT) ensemble keeps the
temperature steady by connecting thermostats.

The Nosé-Hoover chain method is the best way

to do this for production simulations because it
makes sure that the canonical sampling is correct
and doesn't cause the flying ice cube artefact that
happens when you change the speed [39,40]. The
isothermal-isobaric (NPT) ensemble also controls
pressure, which is important for studying phase
transitions

and finding equilibrium lattice

parameters. However, two-dimensional
materials like graphene need to have their out-of-
plane dimension limited to stop them from

collapsing in an unphysical way [41,42].

Table 1: Recommended MD Simulation Parameters for Carbon Nanomaterials

Parameter Mechanical Thermal Diffusion Reference
Time step 1.0 0.5 1.0 [31,32]
(fs)
Minimum 2,000-5,000 5,000-50,000 1,000-10,000 [43,44]
atoms
Productio 1-10 10-50 1-100 [45,46]
n time
(ns)
Ensemble NVT/NPT NVE/NVT NVT [38-42]
Thermost Nosé-Hoover Nosé-Hoover Nosé-Hoover [39,40]
at
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3. Mechanical Properties from MD Simulations
3.1 Elastic Constants and Tensile Strength

Molecular dynamics simulations
consistently indicate remarkable mechanical
properties for pristine carbon nanomaterials,
positioning them among the strongest known
substances. Graphene's Young's modulus values
range from 0.83 to 1.05 TPa, depending on the
conditions of the simulation and the choice of
potential. This is very close to the experimental
benchmark of 1.0 £ 0.1 TPa set by Lee et al.
through
nanoindentation [47-49]. Predictions for tensile
strength range from 93 to 137 GPa, with a lot of

directional anisotropy. For example, loading in a

atomic force microscopy

zigzag pattern gives higher strength (106-137
GPa) and fracture strain (0.20-0.27) than loading

(a) Elastic Modulus Comparison
1200

in an armchair pattern (93-105 GPa, strain 0.14-
0.17). This is because of the symmetry of the
lattice and the orientation of the bonds [50-52].

Through a combination of experiments
and computer simulations, it has been shown
that graphene has a fracture toughness of 4.4
MPa Vm. The ratio Gc(armchair)/Ge(zigzag) =
0.94 shows
anisotropic

that the material is
[53,54]. carbon
nanotubes have Young's moduli of 1.0-1.2 TPa
and theoretical tensile strengths of 94-126 GPa,
depending on their chirality and diameter

weakly
Single-walled

[55,56]. However, the measured strengths of
synthesised samples with defects drop a lot, from
13 to 53 GPa for individual SWCNTSs to 34.65 GPa
for millimeter-long MWCNT bundles [57,58].

(b) Temperature Dependence of Tensile Strength
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Fiqure 3: Mechanical properties of carbon nanomaterials from MD simulations: (a) Young's modulus
comparison across different carbon structures, (b) Temperature dependence of tensile strength showing thermal
softening behavior.

3.2 Temperature and Strain Rate Effects

Temperature  significantly  impacts
mechanical behaviour via thermally activated
processes that influence bond stability and defect
mobility. The polycrystalline
graphene diminishes by about 45% from 100 K to

1200 K, with a transition from brittleness to

strength  of

plasticity occurring above 1000 K, where
increased atomic mobility facilitates dislocation-
mediated deformation [59,60]. The temperature
coefficient of Young's modulus shows a weak

dependence, dropping by 5-10% for every 500 K
rise in temperature. This is because sp? carbon
has stiff covalent bonds [61,62].

Strain rate sensitivity poses

difficulties, as molecular
dynamics simulations utilise rates (107-101° s™)
that are orders of magnitude greater than those
in  experimental (1073-10° ™).
Systematic studies show that zigzag orientations

methodological

conditions

are more sensitive to strain rates than armchair
configurations. For example, in polycrystalline
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graphene at 300 K, the strength increases by 10%
when the strain rate goes from 5x107° to 5x1073

pst [63,64]. Transition state theory and

accelerated MD methods are two ways to try to
fill this gap in time scales, but it is still hard to
prove that they work [65,66].

Table 2: Mechanical Properties of Carbon Nanomaterials from MD Simulations

Material E (GPa) o (GPa) e f Potential Ref.
Graphene 890-961 93-105 0.14-0.17 AIREBO [47-50]
(armchair)

Graphene 830-911 106-137 0.20-0.27 AIREBO [47-50]

(zigzag)

SWCNT 1000-1200 94-126 0.15-0.20 Tersoff [55-58]

(10,10)
Polycrystalline ~800 ~50 ~0.08 AIREBO [59,60]
(10 nm)
Graphene (1% ~850 ~90 ~0.12 AIREBO [67,68]
vacancy)

4. Thermal Conductivity Calculations
4.1 Computational Methods

There are two very different ways to
predict thermal conductivity using molecular
dynamics, each with its own strengths and
weaknesses [69,70]. The equilibrium molecular
dynamics (EMD) method, which is based on the
Green-Kubo formalism, calculates thermal
conductivity by taking the time integral of heat
flux autocorrelation functions in equilibrium.
This method has less of an effect on finite size
than non-equilibrium methods, and it naturally
captures the full tensor character of anisotropic
conductivity, which makes it better for
determining bulk properties [71,72]. However,
convergence problems come up because heat
flux in materials with high conductivity, like
graphene, takes a long time to decorrelate. This

means that simulations have to run for more than

100 ps and be carefully analysed statistically
[73,74].

Non-equilibrium molecular dynamics
(NEMD) apply
gradients thermostatted boundary

techniques temperature
through
regions, quantifying steady-state heat flux to
ascertain conductivity in accordance with
Fourier's law [75,76]. The reverse NEMD method
by Miiller-Plathe is more stable because it moves
kinetic energy between hot and cold areas, which
causes temperature gradients instead of forcing
them [77]. NEMD methods are great for looking
at interfacial thermal resistance (Kapitza
resistance) because they let you see how
temperature profiles change in space, which
gives you direct access to interface contributions.
However, system size effects need to be carefully
corrected by extrapolating to infinite length

[78,79].
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Figure 4: Thermal conductivity analysis: (a) Comparison of MD computational methods including Green-Kubo

equilibrium MD and non-equilibrium approaches, (b) Thermal conductivity predictions at 300 K compared with

experimental measurements.

4.2 Thermal Conductivity Results

Graphene has the highest thermal
conductivity of any known material. Balandin
and his coworkers measured suspended samples
at room temperature and found values between
4840 and 5300 W/m K [80]. MD simulations
utilising optimised Tersoff potentials forecast
values of 2903 + 93 W/mK through EMD
methods, indicating a reasonable concordance
considering the sensitivity to simulation
parameters and finite-size effects. Substrate-
supported graphene exhibits significantly
diminished conductivity, approximately 600
W/m K, attributed to phonon scattering at the
interface, a prediction robustly corroborated by

experimental data.

The transition between ballistic and
diffusive transport regimes, which is important
for managing the heat of nanostructures, is
controlled by phonon mean free paths.

Suspended graphene has mean free paths of

about 240 nm at room temperature, which allows
for quasi-ballistic transport in samples that are
shorter than this length. Quarter-micron samples
attain roughly 35% of the ballistic thermal
conductance limit, illustrating the practical
significance of finite-size effects. Carbon
nanotubes show similar thermal conductivity,
with defect-free SWCNTs having values over
3000 W/mK. The strong dependence on
diameter and chirality shows how phonons

move in one dimension.
5. Interatomic Potentials for Simulating Carbon

Choosing the right interatomic potential
is probably the most important methodological
choice in carbon MD simulations. The wrong
choice can change thermal conductivity
predictions by up to four times and have a huge
effect on how materials fail mechanically. This
section critically assesses the principal potential
nascent machine

families and learning

methodologies
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Figure 5: Interatomic potentials for carbon MD simulations: (a) Radar chart comparing potential performance

across multiple criteria, (b) Accuracy versus computational cost trade-off showing the Pareto frontier

5.1 Empirical Bond-Order Potentials

The Tersoff potential and its derivatives
are still very important for carbon simulations.
They show the potential energy as a sum of
pairwise interactions that is changed by a bond-
order term that shows the local coordination
(2010)
optimised Tersoff parameterisation give the best

environment. Lindsay and Broido's
predictions for the thermal conductivity of
graphene and CNTs. It accurately reproduces
phonon dispersion relations and the inverse-
square frequency dependence of phonon
lifetimes. Standard Tersoff potentials, on the
other hand, don't take into account long-range
interactions and can't explain how bonds break

and form during a fracture.

The Adaptive Intermolecular Reactive
Empirical Bond Order (AIREBO)
enhances REBO by incorporating torsional

potential

interactions and Lennard-Jones terms for non-
bonded interactions, facilitating the simulation
of multi-layer graphene and polymer
composites. AIREBO does a better job of
predicting how materials will break than other
methods, with a Young's modulus of about 910
GPa. However, it greatly underestimates thermal
conductivity because its acoustic phonon modes
are too soft. The switching function used to break
bonds
intermediate bond distances. This led to the

causes unrealistic force spikes at

of
(Tersoff-S) that make failure happen more

development screened Tersoff variants

smoothly.
5.2 Machine Learning Potentials

Machine learning interatomic potentials signify a
revolutionary progression, attaining near-
quantum mechanical precision at computational
expenses suitable for extensive molecular
dynamics simulations. Csdnyi and his team
created the Gaussian Approximation Potential
(GAP) framework, which uses smooth overlap of
(SOAP) with

Gaussian process regression to get energy root-

atomic positions descriptors
mean-square errors of about 10 meV/atom. The
carbon GAP-20 potential, which was trained on
16,906 density functional theory configurations
that defects,

amorphous structures, gets more than 95% of the

included bulk phases, and
DFT cohesive energy accuracy and lets you run

nanosecond simulations of million-atom

systems.

The Spectral Neighbour Analysis
Potential (SNAP) is a different way to use
machine learning that works well in very harsh
conditions. The carbon SNAP potential allows
for simulations at 5 TPa pressure and 20,000 K
temperature, with phase diagram accuracy
within 3% of quantum molecular dynamics. This
enables billion-atom simulations pertinent to
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shock physics and planetary interior conditions.
Neural network potentials like DeepMD and
MACE provide more Pareto-optimal accuracy-

speed trade-offs for certain uses. Active learning

workflows (DP-GEN) automate the process of

making training sets.

Table 3: Interatomic Potential Performance Comparison

Potential K Accuracy E Accuracy Reactivity Relative Cost | Best Use
opt-Tersoff Excellent Good No 0.5x Thermal
AIREBO Underest. Good Yes 1x Fracture
ReaxFF Variable Moderate Yes (QEq) 5-10x Chemistr
y

GAP-20 Good Excellent Yes 100x High
accuracy
SNAP Excellent Good Yes 50% Extreme

P,T

6. Energy Storage Applications

Molecular dynamics simulations illuminate

atomic-scale mechanisms underlying

Li-ion Battery Anodes

macroscopic energy storage performance across
multiple device architectures including lithium-
ion batteries, supercapacitors, hydrogen storage
systems, and thermal management materials.

Supercapacitors

‘hermal Management

+ Graphene PCH: 30 W/mK

Fiqure 6: MD simulations for carbon-based energy storage systems showing four primary application domains:

lithium-ion battery anodes, supercapacitors, hydrogen storage, and thermal management materials.

6.1 Lithium-Ion Battery Anodes

Graphite is still the most common anode
material in commercial lithium-ion batteries.
Lithium intercalation between graphene layers
gives the battery a reversible capacity of 372
mAh/g, which is equal to the LiCg¢ stoichiometry.
MD simulations show that lithium diffusion
coefficients can be anywhere from 107® to 1071°
cm?/s, depending on the method and the path of

diffusion. In-plane diffusion parallel to graphene
sheets attains rates of 1077 to 107 cm?/s, whereas
cross-plane diffusion through grain boundaries
decreases to about 107! cm?/s, elucidating rate
limitations in polycrystalline materials.

Silicon-graphene composites solve the problem
of graphite's limited theoretical capacity by
adding silicon, which has an amazing capacity of
3,579 mAh/g. MD simulations show that
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graphene coatings cut silicon's huge volume
expansion from 300-400% to about 67 %, which
slows down the mechanical degradation that
causes capacity fade. Machine learning-driven
MD finds that the amorphous silicon/graphite-I
interface has the fastest lithiation rate, which
helps optimise composite design. The Young's
modulus of silicon diminishes from 100 GPa to
41 GPa during the transition to the Li;sSi, phase,
elucidating the mechanisms of mechanical
degradation.

6.2 Storing Hydrogen

The storage of hydrogen in carbon
nanostructures has been systematically assessed
through molecular dynamics and Monte Carlo

simulations, focussing on the U.S. The
Department of Energy's goal for practical
vehicular uses is 6.5 wt% [128,129].

Physisorption in pristine CNTs meets this goal in
wide-diameter open SWCNTs at 160 bar and 298
K. In cryogenic conditions (77 K), it can store up
to 33 wt% for widely spaced narrow tubes. Metal

(a) Property Degradation with Defects

decoration greatly improves storage: titanium-
doped (12,12) CNTs reach 8.04 wt% at 77 K with
5% Ti doping—about four times more than
undoped tubes—and keep more than 90% of
their capacity after 100 cycles of adsorption and
desorption.

6.3 Managing Heat

Thermal management simulations show
that graphene could make batteries safer by
helping them get rid of heat more quickly.
Graphene-paraffin composites with 1 wt%
graphene loading exhibit a 60-fold enhancement
in thermal conductivity relative to unmodified
paraffin phase change materials. Hyperbolic
graphene-paraffin structures at 12.5 wt% reach a
record 30.75 W/m K while keeping 90% of their
latent heat capacity. This makes it possible to
stop thermal runaway at discharge rates of 3.75C.
These materials keep the battery temperature
stable at about 42°C phase transition points for
more than 10,000 cycles.
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Figure 7: Impact of defects on carbon nanomaterial properties: (a) Property degradation with increasing vacancy

concentration showing dramatic thermal conductivity reduction, (b) Comparison of property reduction by

different defect types at 1% concentration.
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Table 4: MD-Predicted Energy Storage Performance Parameters

Application Material Performance
Li-ion anode Graphite D_Li: 1077-107% cm?/s
Li-ion anode Si-graphene 67 % volume expansion

H; storage Ti-CNT (5%) 8.04 wt% at 77 K
Supercapacitor Carbide-derived C ~9 pF/cm?
Thermal mgmt. Graphene-PCM 30.75 W/m K

7. Future Research Directions

To make MD simulations more useful
for designing materials for energy storage, there
are a few important research gaps that need to be
filled. First, the multiscale connection between
atomistic MD (nanometre, nanosecond scales)
and continuum models (device scale) is still not

Machine Learning
Potentials

+ Universal MLIPs
+ Active learning
* Uncertainty quantification

fully developed. The smoothed MD and
Arlequin methods show promise, but there aren't
any standard implementations of them yet.
Second, most simulations use simplified defect
structures, but real CVD-grown samples have
complicated defect distributions that need
stochastic defect modelling methods.

Solid Electrolyte
Interfaces

* SEI formation

* Reactive MD
= Degradation chemistry

Multiscale
Bridging

» Atomistic-continuum
« Coarse-graining
= Arlequin method

Beyond-Li
Systems

« Force field development
* Validation benchmarks

Figure 8: Future research directions in MD simulations for carbon energy materials showing the roadmap from
2024-2028 including machine learning potentials, multiscale bridging, solid

electrolyte interfaces, and beyond-lithium systems.

Third, MD timescales (nanoseconds)

cannot accurately represent the realistic
dynamics of battery charge and discharge
(seconds to hours), necessitating accelerated
sampling techniques such as parallel replica
dynamics, metadynamics, and kinetic Monte
Carlo coupling. Fourth, the force fields for solid-

electrolyte interfaces that are important for solid-

state batteries are not as well-defined as those for
liquid electrolyte systems. This means that they
need to be systematically developed and tested.
Fifth, beyond-lithium systems that use carbon
anodes and sodium, potassium, magnesium, and
aluminium ions need systematic force field
development that has been tested against
experimental benchmarks.

203 Dr. Kandula Anjaneyulu & Kanta Jayadev


http://www.ijoer.in/

International Journal of Engineering Research-Online
A Peer Reviewed International Journal
http://www.ijoer.in editorijoer@gmail.com

ISSN: 2321-7758

Vol.14., S1, 2026

BEVILIE) %

Machine
problems with accuracy, but they also create new

learning  potentials  fix
problems, such as how to generalise training sets,
how to measure uncertainty, and how to break
bonds accurately. Active learning workflows
automate the creation of training sets, but they
need to be carefully checked for certain target
properties. Combining machine learning with
reactive potentials for forming and breaking
down solid-electrolyte interfaces is a very
promising area of research that could lead to
predictive simulations of how batteries age.

8. Conclusions

This thorough review shows that
molecular dynamics simulation is a well-
established and important way to use computers
to predict the properties of carbon nanomaterials
that are important for energy storage
applications. The synthesis of literature from
2020-2024 uncovers several significant findings.
Pristine graphene has amazing mechanical
properties, with a Young's modulus of 1.0 TPa
and thermal conductivity of 5000 W/m K for
defect

concentrations as low as 0.1% can lower thermal

suspended samples. However,
conductivity by 83%, which shows how
defect

choosing interatomic potentials can change

important engineering is. Second,
predictions of thermal conductivity by up to four
times. Optimised Tersoff potentials are better for
phonon transport, while AIREBO is still the best

choice for fracture mechanics simulations.

Third, machine learning potentials like
GAP-20 and SNAP now reach more than 95% of
the accuracy of density functional theory at a
much lower cost, making large-scale simulations
possible that quantum mechanical methods
couldn't handle before. Fourth, MD simulations
show that titanium-coated carbon nanotubes can
store 8.04 wt% of hydrogen at 77 K, which is
more than the DOE's goals. Also, lithium
diffusion coefficients in graphite electrodes can
vary by six orders of magnitude depending on
the diffusion pathway. Fifth, graphene-based
phase thermal

change composites have

conductivities of 30.75 W/m K while keeping
their latent heat capacity, which makes them
good for battery safety.

Important areas of research that need

more work include creating standardised

validation  protocols, multiscale bridging
methods that connect atomistic and continuum
descriptions, reactive force fields for solid-
electrolyte interfaces, and systematic force field
development for battery chemistries that go
beyond lithium. The ongoing fusion of machine
learning techniques with conventional molecular
dynamics methods is expected to expedite the
computational discovery of materials for next-
generation energy storage systems. To fully
realise the potential of MD simulation for
rational material design, future progress will
efforts that

algorithmes,

include
high-
performance computing infrastructure, and

require coordinated

developing building

systematically validating experiments.
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