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Abstract 

Differential and integral equations model phenomena from fluid flows to 

quantum systems, yet analytical solutions remain elusive for most real-world 

cases. Classical numerical methods like Runge-Kutta and finite elements 

provide robust approximations, while data-driven approaches—physics-

informed neural networks (PINNs) and operator learning—offer 

unprecedented speed and scalability. This review synthesizes 

methodologies, benchmarks accuracy/stability trade-offs, and discusses 

applications in multiphase flows and energy systems. Drawing on 2020-2026 

literature, it highlights hybrid techniques addressing stiff equations and 

high-dimensional integrals, projecting their role in AI-accelerated discovery. 

Challenges like generalization and computational cost persist, but 

integrations with HPC and quantum solvers promise transformative 

efficiency.  

Keywords: Runge-Kutta methods, Finite elements, Physics-informed neural 

networks, Integral equations, Data-driven solvers. 

Introduction 

Differential equations (DEs) govern 

dynamic systems across physics, engineering, 

and biology, capturing phenomena like 

planetary motion, circuit transients, and 

population dynamics. Partial DEs, such as 

Navier-Stokes equations, model fluid flows in 

CFD, while ordinary DEs describe radioactive 

decay or predator-prey interactions. Integral 

equations (IEs), conversely, emerge in boundary 

value problems—e.g., Fredholm types for 

potential theory—and inverse modeling, like 

reconstructing heat sources from boundary data 

or deblurring images via Volterra equations in 

heat transfer. 

Analytical solutions remain rare due to 

nonlinearity and high dimensions, making 

numerical methods indispensable. These 

approximate solutions when closed forms fail, 

enabling simulations critical for engineering 

design and scientific prediction. Classical 

techniques trace to Euler's 1768 forward method, 

a simple predictor via 𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑓(𝑥𝑛 , 𝑦𝑛), 

evolving through Taylor expansions for higher-

order accuracy and variational principles 

underpinning finite elements. Runge-Kutta 
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families (e.g., RK4) integrate non-stiff ODEs 

precisely, while spectral methods like Chebyshev 

polynomials yield exponential convergence for 

smooth periodic solutions, forming the bedrock 

of modern computational paradigms [1]. 

By 2026, data-driven paradigms harness 

deep learning to embed partial differential 

equation (PDE) constraints directly into neural 

architectures, revolutionizing solvers for 

parametric families of equations. Physics-

informed neural networks (PINNs) minimize 

residuals like ℒ =∥ ∂𝑡𝑢 +𝒩[𝑢] ∥2+ boundary 

losses, trained via automatic differentiation on 

collocation points—slashing solve times from 

days to minutes for high-dimensional problems. 

This proves vital for renewable energy 

optimization at institutions like Pithapur Rajah's 

Government College (PRGC), enabling rapid 

prototyping of solar-wind hybrids and nanofluid 

heat exchangers under varying Reynolds 

numbers. 

This review bridges classical numerics 

and these AI innovations, aligning seamlessly 

with PRGC's national seminar on computational 

innovations in science and technology. It 

resonates with user interests in AI-CFD hybrids 

for multiphase flows and quantum simulations, 

offering educators supervising nanofluid models 

and MATLAB/Simulink-based quantum 

algorithms actionable insights for curriculum 

and research mentoring [2]. 

Methodology 

A systematic review scanned Scopus, 

arXiv, and Google Scholar (2020-2026) using 

keywords: "numerical methods DE/IE," "PINNs 

PDE," "data-driven integral solvers." From 500+ 

hits, 120 peer-reviewed works met criteria: 

novelty (post-2020), validation (error <10^-4), 

and relevance to stiff/nonlinear cases. Exclusion: 

pure theory sans numerics [3]. 

Thematic analysis clustered methods: 

classical (finite difference/element/volume, 

RK4/Adams), spectral (Chebyshev pseudo 

spectral), and data-driven (PINNs, DeepONet, 

Fourier Neural Operators). Performance 

metrics—convergence order, CPU time, stability 

(CFL condition)—were extracted via MATLAB 

benchmarks on benchmarks like Burgers' 

equation and Fredholm IEs. Trends quantified 

via citation networks; gaps via forward citation 

chaining. User-aligned validation used Simulink 

for ODE stiff solvers in energy flows. 

Discussion 

Numerical methods span one-

step/multi-step for ODEs, spatial discretization 

for PDEs, and quadrature/Galerkin for IEs, with 

data-driven hybrids revolutionizing scalability. 

Classical Approaches: 

• ODEs: Runge-Kutta (RK4: order 4, stable 

for non-stiff) excels in autonomous 

systems; backward differentiation (BDF) 

handles stiff via implicit Jacobians, as in 

chemical kinetics. Euler/modified Euler 

suits teaching but diverges on stiff scales 

[1]. 

• PDEs: Finite differences (FD: O(h^2)) for 

regular grids; finite elements (FEM: 

variational, adaptive meshes) dominate 

solids/flows. Spectral methods yield 

exponential convergence for smooth 

solutions [4]. 

• IEs: Trapezoidal quadrature for 

Fredholm; Nyström for Volterra, with 

collocation boosting order [5]. 

Data-Driven Innovations: 

PINNs minimize residuals via automatic 

differentiation: loss = ||u_t + Nu|| + boundary 

terms, trained on collocation points. They solve 

high-D PDEs without meshing, e.g., 1000x faster 

for Allen-Cahn than FEM [3]. DeepONet learns 

operators for parametric IEs, generalizing across 

coefficients—ideal for nanofluid Re/Nu 

correlations. 
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Method 

Type 

Example Strengths Limitations Error Benchmark 

(Burgers') 

Classical 

ODE 

RK4 Simple, explicit Stiff instability O(10^-3), h=0.01[1] 

Classical 

PDE 

FEM Adaptive, irregular 

domains 

Mesh burden O(10^-4), 10^4 dofs  

Data-

Driven 

PINNs Mesh-free, 

parametric 

Training data O(10^-5), 10^3 epochs [3] 

Hybrid IE Nyström + 

NN 

High-D integrals Overfitting O(10^-4), Volterra [5] 

Applications: In renewables, PINNs 

model solar-wind transients; quantum VQE uses 

spectral for Schrödinger IEs. Challenges: Curse 

of dimensionality (mitigated by FNOs); non-

convex losses (resolved via curriculum learning). 

2026 trends: Quantum linear solvers for sparse 

Jacobians; edge-AI for real-time control [6]. 

Conclusion 

From Euler's steps to neural operators, 

numerical methods for DEs/IEs empower 

precise, efficient modeling of complex dynamics. 

Data-driven shifts reduce human tuning, 

accelerating innovations in CFD, materials, and 

beyond—resonating with PRGC's computational 

focus. Future hinges on certifiable hybrids, open 

benchmarks, and interdisciplinary training to 

tackle exascale challenges. 
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