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Abstract

Differential and integral equations model phenomena from fluid flows to
quantum systems, yet analytical solutions remain elusive for most real-world
cases. Classical numerical methods like Runge-Kutta and finite elements
provide robust approximations, while data-driven approaches—physics-
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informed neural networks (PINNs) and operator learning— offer

unprecedented speed and scalability. This review synthesizes
methodologies, benchmarks accuracy/stability trade-offs, and discusses
applications in multiphase flows and energy systems. Drawing on 2020-2026
literature, it highlights hybrid techniques addressing stiff equations and
high-dimensional integrals, projecting their role in Al-accelerated discovery.
Challenges like generalization and computational cost persist, but
integrations with HPC and quantum solvers promise transformative
efficiency.

Keywords: Runge-Kutta methods, Finite elements, Physics-informed neural

networks, Integral equations, Data-driven solvers.

Introduction or deblurring images via Volterra equations in

Differential equations (DEs) govern heat transfer.

dynamic systems across physics, engineering, Analytical solutions remain rare due to
and biology, capturing phenomena like nonlinearity and high dimensions, making
planetary motion, circuit transients, and numerical methods indispensable. These
population dynamics. Partial DEs, such as approximate solutions when closed forms fail,
Navier-Stokes equations, model fluid flows in enabling simulations critical for engineering
CFD, while ordinary DEs describe radioactive design and scientific prediction. Classical
decay or predator-prey interactions. Integral techniques trace to Euler's 1768 forward method,
equations (IEs), conversely, emerge in boundary a simple predictor via y,.1 =y, + hf (X0 W),
value problems—e.g., Fredholm types for evolving through Taylor expansions for higher-
potential theory—and inverse modeling, like order accuracy and variational principles
reconstructing heat sources from boundary data underpinning finite elements. Runge-Kutta
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families (e.g.,, RK4) integrate non-stiff ODEs
precisely, while spectral methods like Chebyshev
polynomials yield exponential convergence for
smooth periodic solutions, forming the bedrock
of modern computational paradigms [1].

By 2026, data-driven paradigms harness
deep learning to embed partial differential
equation (PDE) constraints directly into neural
solvers  for

architectures, revolutionizing

parametric families of equations. Physics-
informed neural networks (PINNs) minimize
like £ =|l d,u + NM[u] I+ boundary

losses, trained via automatic differentiation on

residuals

collocation points—slashing solve times from
days to minutes for high-dimensional problems.
This proves vital for renewable energy
optimization at institutions like Pithapur Rajah's
Government College (PRGC), enabling rapid
prototyping of solar-wind hybrids and nanofluid
under

heat exchangers varying Reynolds

numbers.

This review bridges classical numerics
and these Al innovations, aligning seamlessly
with PRGC's national seminar on computational
innovations in science and technology. It
resonates with user interests in AI-CFD hybrids
for multiphase flows and quantum simulations,
offering educators supervising nanofluid models
and MATLAB/Simulink-based
algorithms actionable insights for curriculum

quantum

and research mentoring [2].
Methodology

A systematic review scanned Scopus,
arXiv, and Google Scholar (2020-2026) using
keywords: "numerical methods DE/IE," "PINNs
PDE," "data-driven integral solvers." From 500+
hits, 120 peer-reviewed works met criteria:
novelty (post-2020), validation (error <107-4),
and relevance to stiff/nonlinear cases. Exclusion:
pure theory sans numerics [3].

Thematic analysis clustered methods:

classical (finite difference/element/volume,

RK4/Adams), spectral (Chebyshev pseudo

spectral), and data-driven (PINNs, DeepONet,

Fourier = Neural Operators). Performance
metrics — convergence order, CPU time, stability
(CFL condition) —were extracted via MATLAB
benchmarks on benchmarks like Burgers'
equation and Fredholm IEs. Trends quantified
via citation networks; gaps via forward citation
chaining. User-aligned validation used Simulink

for ODE stiff solvers in energy flows.
Discussion

Numerical methods span  one-
step/multi-step for ODEs, spatial discretization
for PDEs, and quadrature/Galerkin for IEs, with

data-driven hybrids revolutionizing scalability.
Classical Approaches:

e ODEs: Runge-Kutta (RK4: order 4, stable
for non-stiff) excels in autonomous
systems; backward differentiation (BDF)
handles stiff via implicit Jacobians, as in
chemical kinetics. Euler/modified Euler
suits teaching but diverges on stiff scales

[1].

e PDEs: Finite differences (FD: O(h”2)) for
regular grids; finite elements (FEM:
variational, adaptive meshes) dominate
solids/flows. Spectral methods yield
exponential convergence for smooth
solutions [4].

e JEs:
Fredholm; Nystrém for Volterra, with

Trapezoidal quadrature for

collocation boosting order [5].
Data-Driven Innovations:

PINNs minimize residuals via automatic
differentiation: loss = | |u_t + Nu| | + boundary
terms, trained on collocation points. They solve
high-D PDEs without meshing, e.g., 1000x faster
for Allen-Cahn than FEM [3]. DeepONet learns
operators for parametric IEs, generalizing across
Re/Nu

coefficients —ideal for  nanofluid

correlations.
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Method Example Strengths Limitations Error Benchmark
Type (Burgers')
Classical RK4 Simple, explicit Stiff instability O(107-3), h=0.01[1]
ODE
Classical FEM Adaptive, irregular | Mesh burden 0O(10"-4), 10”4 dofs
PDE domains
Data- PINNs Mesh-free, Training data O(107-5), 103 epochs [3]
Driven parametric
Hybrid IE | Nystrom + | High-D integrals Overfitting O(10"-4), Volterra [5]
NN
Applications: In renewables, PINNs Opportunities and challenges. (2026,
model solar-wind transients; quantum VQE uses January 6).

spectral for Schrodinger IEs. Challenges: Curse
of dimensionality (mitigated by FNOs);, non-
convex losses (resolved via curriculum learning).
2026 trends: Quantum linear solvers for sparse
Jacobians; edge-Al for real-time control [6].

Conclusion

From Euler's steps to neural operators,
DEs/IEs
precise, efficient modeling of complex dynamics.
shifts
accelerating innovations in CFD, materials, and

numerical methods for empower

Data-driven reduce human tuning,
beyond —resonating with PRGC's computational
focus. Future hinges on certifiable hybrids, open
benchmarks, and interdisciplinary training to

tackle exascale challenges.
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