
International Journal of Engineering Research-Online  
A Peer Reviewed International Journal   

ISSN: 2321-7758             http://www.ijoer.in    editorijoer@gmail.com 

Vol.14., S1, 2026 
January    

 

182  V. Sanjeeva Kumar et al., 
 

 

 

 

 
 

AI and Machine Learning in Computational Physics and Chemistry: 
Synergies and Horizons 

 
V. Sanjeeva Kumar¹*, T. V. V. Satyanarayana¹, Rambabu Vasamsetti¹²,  

P. Vijaya Kumar¹, S. V. G. V. A. Prasad³ 
¹Lecturer, Department of Chemistry, Pithapur Rajah’s Government College (Autonomous), 

Kakinada, Andhra Pradesh, India 
²Research Scholar, Department of Chemistry, Government College (Autonomous), Affiliated 

Research Centre, Adikavi Nannaya University (AKNU), Rajamahendravaram, Andhra 
Pradesh, India 

³Lecturer, Department of Physics & Electronics, Pithapur Rajah’s Government College 
(Autonomous), Kakinada, Andhra Pradesh, India 

Corresponding Author Email: vskchemistry@prgc.edu.in 
 

DOI: 10.33329/ijoer.14.S1.182

 
Abstract 

Artificial Intelligence (AI) and Machine Learning (ML) revolutionize 

computational physics and chemistry by accelerating simulations, predicting 

material properties, and optimizing complex systems. This review, inspired 

by seminar sub-themes like "AI Ethics & ML," "Sustainable Energy 

Modelling," "Quantum Computing Physics," and "Computational Physics 

Optics," synthesizes high-throughput screening for nanomaterials, ML force 

fields (MLFFs) for multiscale dynamics, and ethical AI deployment. Case 

studies include DFT-MC discovery of high-Tc 2D ferromagnets and 

electrolyte screening guiding syntheses. Methodologies span neural 

networks, genetic algorithms, and hybrid QM/ML models, addressing 

challenges like interpretability and data scarcity. Horizons point to closed-

loop labs and quantum ML by 2030, fostering sustainable innovations from 

PRGC's interdisciplinary lens 

Keywords: AI/ML computational physics, sustainable energy modelling, 
quantum computing, ML force fields, AI ethics.. 

Introduction 

Computational physics and chemistry 

confront vast scales—from quantum electron 

correlations to turbulent macroscopic flows—

traditionally hamstrung by ab initio methods' 

exponential costs. PRGC's January 2026 seminar 

sub-themes spotlight AI/ML breakthroughs: "AI 

Security & Ethics in ML" safeguards predictions 

via explainable models; "Renewable Energy 

Modelling" accelerates battery/solar design; 

"Quantum Computing Physics Optics" deploys 

qubits for material simulations; "Computational 

Physics Optics" models’ photonic 

nanostructures. Physics faculty expertise in 

CFD/quantum optics intersects chemistry's 

nanomaterials/energy focus, fostering 

interdisciplinary synergy. 
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Pivotal advances propel this paradigm: 

GPU-accelerated ML screens billions of 

compounds with 350x speedups over CPU 

baselines; DFT-Monte Carlo analysis of 786 2D 

materials uncovers 26 high-Tc ferromagnets 

exceeding 400 K, experimentally validated; cloud 

HPC sifts 32 million electrolytes to 500,000 

thermodynamically stable candidates, guiding 

18 successful laboratory syntheses. Essential 

tools—CHARMM-GUI for MD system setup, 

ViNAS-Pro for bioactivity-predicted libraries, 

GNoME's graph neural networks for crystal 

inverse design—democratize property 

optimization. Ethical ML counters biases in 

sustainability forecasts through SHAP 

interpretability and uncertainty quantification. 

This review delineates methodologies like 

neural force fields extending simulations 10^6-

fold, genetic algorithms for multi-objective 

tuning, and hybrid QM/ML for interfaces. Sub-

theme synergies emerge: active learning bridges 

screening-to-synthesis gaps (10^4x acceleration); 

federated learning secures collaborative data. 

Challenges persist—data scarcity demands 

transfer learning, quantum noise requires error 

mitigation—but horizons gleam with self-

driving labs slashing experimental cycles 70%. 

PRGC's national seminar catalyzes faculty-led 

innovations, projecting sustainable energy 

revolutions by 2030 [1-4]. 

Methodology 

AI/ML pipelines for physics/chemistry 

integrate data-driven and physics-informed 

approaches. 

Data-Driven Prediction and Screening 

Graph Neural Networks (GNNs) and 

Random Forests (RF) serve as powerful 

surrogates for Density Functional Theory (DFT) 

calculations, dramatically accelerating bandgap 

and magnetism predictions in nanomaterials. 

Traditional DFT—while accurate for electronic 

structure—requires prohibitive compute for 

high-throughput screening of vast chemical 

spaces exceeding 10^60 configurations. GNNs 

excel by encoding atomic connectivity as graphs, 

learning rotationally invariant features to predict 

bandgaps within ±0.1 eV accuracy across diverse 

semiconductors, as demonstrated in GNoME's 

discovery of 2.2 million stable crystals. RF 

ensembles, meanwhile, handle tabular DFT-

derived descriptors for magnetism classification, 

achieving 95% accuracy on 2D ferromagnets by 

integrating spin-orbit coupling and lattice 

parameters. 

ViNAS-Pro complements this by 

forecasting bioactivity in nanostructure libraries, 

generating candidates optimized for drug 

delivery or sensor applications through 

generative adversarial networks trained on 

quantum chemical datasets. Its virtual screening 

identifies protein-NP corona stabilizers with 42% 

enhanced efficacy, bridging materials science 

and biomedicine. 

Hierarchical filtering streamlines billion-

scale scans: initial classical proxies—pore 

volumes for MOFs, electronegativity ratios for 

semiconductors—eliminate 99% of unstable 

candidates in seconds. Surviving structures 

advance to ML Force Fields (MLFFs) like MACE 

or NequIP, which surrogate ab initio molecular 

dynamics with femtosecond precision over 

microsecond trajectories. MLFFs extend 

timescales 10^6-fold for battery electrolytes and 

supercapacitors, capturing co-ion effects missed 

by classical potentials. This cascade—proxies → 

ML surrogates → targeted DFT—yields 10^4x 

overall acceleration, as validated by cloud HPC 

filtering 32M electrolytes to 500K stables guiding 

18 syntheses . 

Such workflows empower PRGC faculty 

to tackle seminar sub-themes from renewable 

modeling to quantum optics, democratizing 

inverse design for sustainable materials [5-7]. 

Multiscale Simulations 

CHARMM-GUI streamlines the 

construction of all-atom molecular dynamics 

(MD) and quantum mechanics/molecular 

mechanics (QM/MM) systems for 

nanostructures, automating solvation, force field 

parameterization, and periodic boundary 
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conditions. This web interface generates 

production-ready inputs for protein-

nanoparticle corona simulations, lipid-wrapped 

quantum dots, and MOF-electrolyte interfaces in 

minutes—versus weeks manually. For 

biomedicine, it models NP-protein adsorption 

driving 42% drug delivery enhancements; in 

energy chemistry, it setups battery electrode 

solvation layers capturing ion desolvation 

barriers missed by rigid models. QM/MM 

hybrids embed high-level DFT regions (e.g., 

catalytic active sites) within classical MM 

environments, resolving electronic effects at 

interfaces with chemical accuracy. 

Machine Learning Force Fields (MLFFs) 

like MACE (Multi-ACE) and NequIP propel 

simulations to microsecond (μs) timescales, 

surrogating ab initio MD with sub-kelvin 

energy/force precision. Trained on diverse DFT 

datasets, MACE predicts battery intercalation 

dynamics—lithium diffusion in solid 

electrolytes, co-ion effects in supercapacitors—

extending trajectories 10^6-fold for rare event 

sampling. PRGC chemistry faculty apply these to 

renewable modeling, optimizing solid-state 

batteries where classical FF fail quantum 

anharmonicity. 

Genetic algorithms (GAs) drive multi-objective 

optimization for renewables: evolving alloy 

compositions for solar photocatalysts (bandgap 

tuning + stability) or wind turbine blade 

topologies via CFD. Crossover/mutation 

explores 10^9 Pareto fronts, converging 100x 

faster than grid search. 

Fuzzy logic complements GAs in computational 

fluid dynamics (CFD) optics, managing 

turbulence uncertainties in photonics 

manufacturing. Membership functions quantify 

"high vorticity" or "optical scatter," enabling 

robust laser-material simulations aligning with 

PRGC's "Computational Physics Optics" sub-

theme. Hybrids—GA+fuzzy—yield 30% drag 

reductions in renewable flows, ethically audited 

via seminar's AI ethics focus [5-7]. 

Optimization and Ethics 

Active learning (GPR) queries expensive DFT; 

Bayesian tuning on HPC. SHAP explains black-

box models for ethics; federated learning secures 

data [8,9] 

Sub-Theme AI/ML Technique Application 

Sustainable Energy MLFFs + GA Electrolyte/battery design [He, B. et al. (2020)] 

Quantum Physics VQE hybrids Correlated materials  

Optics Simulation GNN photonics Nanophotonics [Kabiraj, A. et al. (2020)] 

AI Ethics SHAP/Uncertainty Bias-free predictions  

Discussion 

Renewable Energy Modeling 

ML screens 32M electrolytes, predicting 

stables and guiding syntheses; MLFFs model 

intercalation for supercapacitors, revealing co-

ions. GA optimizes solar CFD [3,6]. 

 

 

 

Quantum Computing Physics 

Hybrids embed VQE in classical DFT for 

Hubbard models; optics simulations via ML 

accelerate photonic crystals [2]. 

AI Ethics & Security 

SHAP interprets GNN energies; ethics 

frameworks audit biases in energy models, 

aligning with "AI Security & Ethics ML"[9]. 
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Challenges: Data scarcity (transfer learning); 

interpretability (hybrids); quantum noise (error 

mitigation). PRGC's research committee fosters 

submissions [1]. 

Challenge Solution Sub-Theme Link 

Scalability HPC-ML Energy Modeling 

Bias/Ethics Explainable AI AI Ethics  

Quantum Limits Hybrid VQE Quantum Physics 

Industry (e.g., Reliance renewables) 

adopts; conferences like Nano 2026 extend 

dialogues. 

Conclusion 

AI/ML empower computational 

architects across PRGC seminar sub-themes, 

from ethical energy models to quantum optics. 

Accelerations—10^4x screening, 70% cycle 

cuts—drive sustainable discoveries. Faculty 

collaborations herald ethical, innovative futures 

in physics/chemistry. 
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