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Abstract

Artificial Intelligence (AI) and Machine Learning (ML) revolutionize
computational physics and chemistry by accelerating simulations, predicting
material properties, and optimizing complex systems. This review, inspired

by seminar sub-themes like "AI Ethics & ML," "Sustainable Energy
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Modelling," "Quantum Computing Physics," and "Computational Physics

Optics," synthesizes high-throughput screening for nanomaterials, ML force

fields (MLFFs) for multiscale dynamics, and ethical Al deployment. Case
studies include DFT-MC discovery of high-Tc 2D ferromagnets and
electrolyte screening guiding syntheses. Methodologies span neural
networks, genetic algorithms, and hybrid QM/ML models, addressing
challenges like interpretability and data scarcity. Horizons point to closed-
loop labs and quantum ML by 2030, fostering sustainable innovations from
PRGC's interdisciplinary lens

Keywords: AI/ML computational physics, sustainable energy modelling,
quantum computing, ML force fields, Al ethics..

Introduction via explainable models; "Renewable Energy
Modelling" accelerates battery/solar design;
"Quantum Computing Physics Optics" deploys
qubits for material simulations; "Computational

Computational physics and chemistry
confront vast scales—from quantum electron
correlations to turbulent macroscopic flows—

traditionally hamstrung by ab initio methods' Physics Optics' models photonic

exponential costs. PRGC's January 2026 seminar nanostructures. Physics faculty expertise in
sub-themes spotlight AI/ML breakthroughs: "Al

Security & Ethics in ML" safeguards predictions

CFD/quantum optics intersects chemistry's
nanomaterials/energy focus, fostering
interdisciplinary synergy.
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Pivotal advances propel this paradigm:
GPU-accelerated ML
compounds with 350x speedups over CPU
baselines; DFT-Monte Carlo analysis of 786 2D
materials uncovers 26 high-Tc ferromagnets

screens billions of

exceeding 400 K, experimentally validated; cloud
HPC sifts 32 million electrolytes to 500,000
thermodynamically stable candidates, guiding
18 successful laboratory syntheses. Essential
tools—CHARMM-GUI for MD system setup,
ViNAS-Pro for bioactivity-predicted libraries,
GNoOME's graph neural networks for crystal

inverse design — democratize property
optimization. Ethical ML counters biases in
sustainability =~ forecasts = through  SHAP

interpretability and uncertainty quantification.

This review delineates methodologies like
neural force fields extending simulations 10°6-
fold, genetic algorithms for multi-objective
tuning, and hybrid QM/ML for interfaces. Sub-
theme synergies emerge: active learning bridges
screening-to-synthesis gaps (10™4x acceleration);
federated learning secures collaborative data.
Challenges persist—data scarcity demands
transfer learning, quantum noise requires error
mitigation—but horizons gleam with self-
driving labs slashing experimental cycles 70%.
PRGC's national seminar catalyzes faculty-led
innovations, projecting sustainable

revolutions by 2030 [1-4].

energy

Methodology

AI/ML pipelines for physics/chemistry
integrate data-driven and physics-informed
approaches.

Data-Driven Prediction and Screening

Graph Neural Networks (GNNs) and
Random Forests (RF)
surrogates for Density Functional Theory (DFT)

serve as powerful
calculations, dramatically accelerating bandgap
and magnetism predictions in nanomaterials.
Traditional DFT —while accurate for electronic
structure —requires prohibitive compute for
high-throughput screening of vast chemical
spaces exceeding 10760 configurations. GNNs
excel by encoding atomic connectivity as graphs,

learning rotationally invariant features to predict
bandgaps within £0.1 eV accuracy across diverse
semiconductors, as demonstrated in GNoME's
discovery of 2.2 million stable crystals. RF
ensembles, meanwhile, handle tabular DFT-
derived descriptors for magnetism classification,
achieving 95% accuracy on 2D ferromagnets by
integrating spin-orbit coupling and lattice
parameters.

ViNAS-Pro
forecasting bioactivity in nanostructure libraries,

complements this by

generating candidates optimized for drug
through
generative adversarial networks trained on

delivery or sensor applications
quantum chemical datasets. Its virtual screening
identifies protein-NP corona stabilizers with 42%
enhanced efficacy, bridging materials science

and biomedicine.

Hierarchical filtering streamlines billion-

scale scans: initial classical proxies—pore
volumes for MOFs, electronegativity ratios for
semiconductors —eliminate 99% of unstable
candidates in seconds. Surviving structures
advance to ML Force Fields (MLFFs) like MACE
or NequlP, which surrogate ab initio molecular
dynamics with femtosecond precision over
MLFFs

timescales 10°6-fold for battery electrolytes and

microsecond  trajectories. extend
supercapacitors, capturing co-ion effects missed
by classical potentials. This cascade —proxies —
ML surrogates — targeted DFT —yields 10"4x
overall acceleration, as validated by cloud HPC
filtering 32M electrolytes to 500K stables guiding

18 syntheses .

Such workflows empower PRGC faculty
to tackle seminar sub-themes from renewable
modeling to quantum optics, democratizing
inverse design for sustainable materials [5-7].

Multiscale Simulations

CHARMM-GUI
construction of all-atom molecular dynamics
(MD)
mechanics

streamlines the

and quantum mechanics/molecular
(QM/MM)
nanostructures, automating solvation, force field

systems for

parameterization, and periodic boundary
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conditions. This web interface generates
production-ready inputs for protein-
nanoparticle corona simulations, lipid-wrapped
quantum dots, and MOF-electrolyte interfaces in
minutes—versus  weeks  manually.  For
biomedicine, it models NP-protein adsorption
driving 42% drug delivery enhancements; in
energy chemistry, it setups battery electrode
solvation layers capturing ion desolvation
barriers missed by rigid models. QM/MM
hybrids embed high-level DFT regions (e.g.,
catalytic active sites) within classical MM
environments, resolving electronic effects at

interfaces with chemical accuracy.

Machine Learning Force Fields (MLFFs)
like MACE (Multi-ACE) and NequlP propel
simulations to microsecond (ps) timescales,
surrogating ab initio MD with sub-kelvin
energy/force precision. Trained on diverse DFT
datasets, MACE predicts battery intercalation
dynamics—lithium  diffusion in  solid
electrolytes, co-ion effects in supercapacitors —
extending trajectories 1076-fold for rare event
sampling. PRGC chemistry faculty apply these to
renewable modeling, optimizing solid-state

batteries where classical FF fail quantum
anharmonicity.

Genetic algorithms (GAs) drive multi-objective
optimization for renewables: evolving alloy
compositions for solar photocatalysts (bandgap
tuning + stability) or wind turbine blade
topologies via CFD. Crossover/mutation
explores 10"9 Pareto fronts, converging 100x
faster than grid search.

Fuzzy logic complements GAs in computational
fluid dynamics (CFD) optics, managing
turbulence uncertainties  in  photonics
manufacturing. Membership functions quantify
"high vorticity" or "optical scatter," enabling
robust laser-material simulations aligning with
PRGC's "Computational Physics Optics" sub-
theme. Hybrids—GA+fuzzy —yield 30% drag
reductions in renewable flows, ethically audited
via seminar's Al ethics focus [5-7].

Optimization and Ethics

Active learning (GPR) queries expensive DFT;
Bayesian tuning on HPC. SHAP explains black-
box models for ethics; federated learning secures
data [8,9]

Sub-Theme AI/ML Technique

Application

Sustainable Energy MLFFs + GA

Electrolyte/battery design [He, B. et al. (2020)]

Quantum Physics VQE hybrids Correlated materials
Optics Simulation GNN photonics Nanophotonics [Kabiraj, A. et al. (2020)]
Al Ethics SHAP/Uncertainty Bias-free predictions

Discussion Quantum Computing Physics

Renewable Energy Modeling

ML screens 32M electrolytes, predicting
stables and guiding syntheses; MLFFs model
intercalation for supercapacitors, revealing co-
ions. GA optimizes solar CFD [3,6].

Hybrids embed VQE in classical DFT for
Hubbard models; optics simulations via ML
accelerate photonic crystals [2].

Al Ethics & Security

SHAP interprets GNN energies; ethics
frameworks audit biases in energy models,
aligning with "AI Security & Ethics ML"[9].
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Challenges: Data scarcity (transfer learning);
interpretability (hybrids); quantum noise (error

mitigation). PRGC's research committee fosters
submissions [1].

Challenge Solution Sub-Theme Link
Scalability HPC-ML Energy Modeling
Bias/Ethics Explainable Al Al Ethics

Quantum Limits Hybrid VQE Quantum Physics

Industry Reliance renewables)

(e.g.,
adopts; conferences like Nano 2026 extend

dialogues.
Conclusion

AI/ML
architects across PRGC seminar sub-themes,

empower computational

from ethical energy models to quantum optics.
70%
discoveries.

Accelerations —10"4x  screening, cycle

cuts—drive sustainable Faculty

collaborations herald ethical, innovative futures
in physics/chemistry.
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