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Abstract

In the era of digital manufacturing, automation is employed using
sophisticated machines to enhance the product quality, minimizing the
machining time and reducing production costs. CNC Turning process is a
common process used in manufacturing industries, in which, speed, feed and
 reanamonst soumnaL oF depth of cut are the major input factors and surface roughness (Ra) and metal

removal rate (MRR) are the major output characteristics. In this work, CNC
Turning process is considered and polynomial regression (PR), support
vector regression (SVR) and random forest (RF) techniques from classical
machine learning (ML) are employed to model the process, based on the
dataset prepared from the experimental observations. The experiments are
conducted by considering the Aluminium 7075 alloy material. The best-fit
ML technique is implemented to model the process. The validated model of
the response, Ra is utilized in the process of optimization. Ant Colony
Optimization Algorithm (ACO) and Quantum inspired Ant Colony
Optimization Algorithm (QACO) are used to optimize the process
parameters and the outcomes are compared. The study paves the way for
quantum- accelerated intelligent machining systems.

Keywords: CNC Turning, Surface roughness, Machine learning, ACO,
QACO.

1. Introduction production, reduced machining time, and

In the evolving landscape of digital minimized operational costs. Among various

. . . . machinin rocesses, Computer Numerical
manufacturing, the integration of automation & b ¢ P

and intelligent systems has become Control (CNC) turning stands out due to its

indispensable for achieving high-quality preles1on, repeatabl.hty, and suitability for a wide
variety of materials and shapes, but its
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effectiveness depends heavily on choosing the
right settings —specifically, the cutting speed,
feed rate, and depth of cut. These factors play a
major role in determining both the surface finish
(Ra) and how quickly material is removed (MRR)
— two critical performance indicators in the
machining.

CNC turning is a machining process as
shown in Fig. 1 that uses computer-controlled
machines to create precision parts. A rotating
work piece is shaped by a stationary cutting tool
that moves along the X and Z axes. The
movement of tool is controlled by computer
control and allows to machine complex
geometries with high accuracy. In general,
turning process is used to produce cylindrical
components like shafts, pins with close tolerance
limits and fine finish and this process is used in
great extent in the industries such as automotive,

aerospace and medical devices.

Fig. 1. CNC Turning process

It is a common practice to optimize the
parameters of a machining process depends on
empirical models or trial-and-error methods in
conventional approach. These methods consume
time and stuck at local minima. Data-driven
modelling and optimization with the
widespread application of machine learning
techniques enables the prediction and
optimization of parameters through the machine

learning algorithms.
2. Related work

CNC turning is a commonly used
process in the manufacturing industries and it
impacts the productivity, quality and tool life
significantly, if not optimized it. Ra and MRR are
the two important output characteristics used to

evaluate the performance of machining.
Researchers explored empirical, statistical and
machine learning based approaches to model

and optimize the machining parameters.

Regression based approaches like

polynomial regression [1], support vector
regression [2], random forest [3] from machine
learning were applied widely to predict the
parameters of the machining processes.
Conventional genetic algorithm and teaching-
learning based optimization algorithms used in
in different manufacturing processes [4].
Quantum machine learning with its algorithms is
gaining popularity to explore the advantages of
quantum  computation.  Techniques like
Quantum Support Vector Machines (QSVMs)
and quantum kernel estimation have
demonstrated potential in classification and
regression tasks [5], even though constrained by
quantum  hardware limitations. Grover’s
algorithm, a quantum search algorithm, is
especially notable for providing a quadratic
speedup in finding optimal solutions in
unstructured datasets, making it a promising
candidate  for  optimization tasks in
manufacturing [6]. Few researchers attempted to
optimize logistics and supply chain management

with quantum optimization [7].

The idea of incorporating quantum
computing  principles into  evolutionary
algorithms was first proposed by Han et al. [8, 9].
In their approach, individuals are represented
using quantum bits, or qubits. These qubits are
then modified using quantum gates and other
quantum operators. Interestingly, each quantum
individual can represent multiple classical
individuals at once which is the concept of

superposition.

This allows for a broader search space
and introduces diversity through quantum-
based encoding. Quantum inspired algorithms
are gaining superiority and popularity over
classical evolutionary algorithms for solving
combinatorial

complex engineering and

problems such as travelling salesman problem
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[10, 11], knapsack problem [12], filter design
problem [13], numerical optimization problem
[14], network design problem [15], multi cast
routing problem [16], flow shop scheduling
problem [17], power system optimization [18],
networks [19].
Researchers started exploring hybrid approaches

training of fuzzy neural

that combine classical ML models with quantum
inspired algorithms for improved performance.
This kind of approach in manufacturing
processes remain unexplored. This work aimed
to bridge the gap between classical and quantum
inspired approaches for modelling and
optimizing the parameters of CNC turning

process.

3. Methodology

In this work, it is proposed to adopt both the
classical and quantum inspired approaches as
shown in Fig. 2. Initially, the experiments are
conducted by considering the Aluminium 7075
alloy material on Sinumerik, CNC Turning
center and dataset is prepared. PR, SVR and RF
techniques from classical machine learning are
implemented to model the CNC Turning process
parameters. Further, GA is implemented to
optimize the process parameters with the
validated models and quantum inspired genetic
algorithm is also implemented and the results are
compared. The comparative analysis highlights
the feasibility and potential advantages of
quantum-assisted manufacturing and this study
paves the way for quantum-accelerated
intelligent machining systems.

Qptimization with
3 e TN
Experimental s Compare &
Cbservations E ML Madeling Inpterpret
- \ Optimization with /
2o

Fig. 2. Methodology adopted

3.1. Experimentation

A variety of techniques have been
applied to different machining processes in
previous research. In this study, CNC turning
operations were carried out using a Sinumerik
8280 CNC Lathe Machine, as shown in Fig. 3.1.
The material used was a round bar of Aluminium
7075 (75 x 33 mm), chosen for its widespread use
in the tooling and manufacturing industries due
to its excellent dimensional stability and strong
resistance to wear and abrasion. The machined
work piece is shown in Fig. 3.2. Data collected
from these experiments were used to build
machine learning models. The input factors
considered were spindle speed (s), feed rate (f),
and depth of cut (d), while the output variable
was surface roughness (Ra).

The method used to measure Ra is
illustrated in Fig. 3.3. To identify the best-
performing ML model, PR, SVR, and RF

techniques were applied and compared based on
their statistical performance. Before training the
models, the dataset was checked for normal
distribution. A normal probability plot for Ra
was plotted and is shown in Fig. 4. It can be
observed from Fig. 4 that all the data points are

normally distributed.

Figure 3.1 Sinumerik 8280 CNC Lathe machine
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Machine learning models are used in the
optimization process to fine-tune the machining
parameters with the help of optimization
algorithms. These methods are implemented
using Python, by varying the split ratio of
training-to-testing data. Standard split of 80:20 is
used at first then lower ratio (75: 25) is considered
but performance was not satisfactory. Higher
split ratios are considered and their statistical

performance is summarized in Table 1. As shown

A in the table 1, Polynomial Regression (PR)

32. Work piece 33 Ra i easuren ot emerges as the most suitable technique with split

ratio 95:05 for this dataset, achieving R-squared

values above 95% for surface roughness (Ra) and

showing minimal prediction errors.

Therefore, PR with a 95:05 training-to-
testing data split was used to develop the
machine learning models. PR was applied to the
experimental data focusing on the output
response, and a detailed analysis was performed.
The regression coefficients for each individual

Parcest
w® ¥¥AESIE 3 8

variable and their interactions were calculated.

As shown in Table 1, the R-squared value for

surface roughness (Ra) is 0.9516, meaning the

-
-

model explains about 95.16% of the variation in

the data. The resulting ML model for Ra is
Flg 3.4. Normal Probablllty plot for Ra presented in equatlon (1)

Table 1. Performance of ML techniques considered

Split ratio of the dataset is 80:20

Method Ra

MSE MAE R2
PR 0.3506 0.4560 0.2958
SVR 0.3581 0.5595 0.2806
RF 0.3107 0.4648 0.3758
Method Split ratio of the dataset is 90:10

MSE MAE R2
PR 0.1662 0.2684 0.5806
SVR 0.2171 0.4654 0.4523
RF 0.1366 0.3100 0.6553
Method Split ratio of the dataset is 95:05

MSE MAE R2
PR 0.0027 0.0519 0.9516
SVR 0.2418 0.4895 -3.3059
RF 0.0366 0.1912 0.3483

Ra=0.3799 + 0.00039s - 0.1951f - 1.4964d + 0.0000001185s2 + 0.00053sf + 0.00005631sd - 0.318f + 1.4715fd
+2.7384d2 (1)
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3.2 Optimization of turning process
parameters

Optimization is the process of finding
the best values for a system’s parameters to meet
all design goals while keeping costs as low as
possible. In this study, Equation (1) is used to
carry out the optimization.

3.21. Ant Colony Optimization Algorithm

Ant Colony Optimization (ACO)
algorithm is a nature-inspired, meta-heuristic
that mimics the foraging behavior of real ant
colonies to solve complex optimization
problems. In ACO, a population of artificial ants
collaboratively constructs solutions by moving
through a problem space based on probabilistic
decision rules.

These decisions are guided by two key
factors: pheromone trails, which represent

accumulated experience from previous ants, and
heuristic information, which reflects problem-
specific knowledge. As ants build solutions, their
quality is evaluated using an objective function.
Pheromone levels on solution components are
then updated through evaporation and
deposition mechanisms, where evaporation
prevents premature convergence and deposition
reinforces  high-quality = solutions. =~ Over
successive iterations, promising solution paths
receive stronger pheromone reinforcement,
increasing the likelihood of being selected by
future ants. This iterative learning process
enables ACO to balance exploration and
exploitation effectively, leading to near-optimal
solutions for combinatorial and continuous
optimization = problems in  engineering
applications. The pseudocode of ACO is given in
exhibit 1.

Procedure Ant Colony Optimization:

w hile not termination de:
Generate att population;

Up date pheromone trial;
end while
end procedure

Initialize necessary parameters and pheromone trials;

Calculate fitness values associated with each ant;
Find best sclution through selection methods;

Exhibit 1. Pseudocode of ACO

3.22. Quantum inspired Ant Colony
Optimization Algorithm

Quantum  inspired Ant Colony
Optimization (QACO) is an advanced meta-
heuristic algorithm that combines the collective
foraging behavior of classical ant colony
optimization with concepts borrowed from
quantum computing, such as superposition and
probabilistic state representation. In this,
solution components are encoded using qubits,
which exist in a superposition of states, allowing
the algorithm to represent multiple potential
solutions  simultaneously.  Artificial ants
construct solutions by observing or collapsing
these qubits into discrete states, guided by both
pheromone  information and  quantum

probability amplitudes. The quality of each
constructed solution is evaluated using objective
function, and the best-performing solutions are
identified. Unlike classical ACO, QACO updates
its search process through quantum rotation
gates, which adjust qubit probabilities toward
promising regions of the solution space.

Simultaneously, pheromone trails are
updated through evaporation and deposition
mechanisms to reinforce high-quality solutions.
This hybrid learning strategy enhances
exploration, reduces premature convergence,
and improves convergence speed, making
QACO particularly effective for complex, high-
dimensional engineering optimization problems
and the pseudocode of ACO is given in exhibit 2.
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while not termination de:
Generate ant population:

states to choose its path;
Calculate fitness values:

Find best solution:

solution;
Apply pheromone evaporation:

end while
return Best global solution,
end procedure

Procedure Quantum inspired Ant Colony Optimization Algorithm
Initialize parameters: population size, pherom one evaporation rate, rotation angle
Initialize Pheromone trails, Qubit population in a state of superposition (usually L_)

Each ant constructs a solution by ohserving (collapsing) the Qubitsinto discrete binary

Ewaluate the objective function for each ant's constructed path;

Compare cutrent iteration ants with the global best;

Select the "Best-so-far" ant to guide the quantum update;

Update Quantum and Pheromone states:

Apply Quantum Gates to the Qubit population to shift probabilities toward the best

Deposit new pheromone based on the best solution found,

Exhibit 2. Pseudocode of Quantum inspired ACO

Ant Colony Optimization (ACO) and
inspired ACO (QACO)
complementary roles depending on problem

Quantum serve
complexity and resource availability. Classical
ACO excels in moderate-sized problems where
decision variables and constraints are
manageable, providing an effective balance
between exploration and exploitation with
transparent pheromone-based mechanisms. Its
simplicity, interpretability, and low
computational requirements make it suitable for
small-to-medium scheduling, routing, and
process optimization, particularly in resource-
limited environments like embedded systems or
real-time applications. In contrast, QACO is
designed for large, complex search spaces with
high dimensionality and non-linear interactions.
By leveraging quantum-inspired
representations, it explores multiple regions
simultaneously, maintains solution diversity,
and avoids local minima through probabilistic
superposition and interference mechanisms.
Although more complex to implement, QACO
delivers superior solution quality, faster
convergence, and greater robustness, making it

ideal for high-precision, research-driven, or

large-scale optimization tasks where

performance outweighs simplicity.

3.2.3. Formulation of optimization problem

The statement of optimization problem is given
below:

Optimization problem Single-objective

optimization problem Objective : Minimize Ra
Input parameters 500 = s <1500
05=2f<15
01=d<05

q. Results and discussion

CNC Turning
conducted and the experimental observations

experimentation  is

are turned into a potential dataset. Machine
learning techniques namely, PR, SVR and RF are
implemented with different training-and-test
data split ratios. PR is emerged as best-fit
technique based on the statistical performance
and the same is implemented to model the CNC
turning  process. The single objective
optimization problem is formulated to optimize
the CNC turning process parameters using ACO

and QACO. Equation (1) is utilized as objective
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and both the
implemented using Python code and executed

function algorithms are

on Google Colab platform.

The ACO algorithm implemented using
the parameters, ant population=50, maximum
number of iterations=1500 and the convergence
plot is presented in Fig. 7. The QACO is
implemented

using the parameters, ant

population=80, maximum number of
iterations=1500, rotation angle=0.05 and the
convergence plot is presented in Fig. 8. It is
observed from Fig. 7 and 8 that objective function
is converged between 1000-1050 generations in
ACO whereas the same is converged in QACO

around 850th generation.

Surtace Roughness (R

Generation (Reration)

Fig. 7. Convergence plot for Ra with ACO

Fig. 8. Convergence plot for Ra with QACO

4.1. Comparison of ACO and Quantum
inspired ACO

The comparative analysis is carried out
while implementing conventional as well as
quantum inspired approaches of optimization
when optimizing the machining process
parameters and the observations are presented

below:

4.1.1.
analysis

Convergence plots comparison and

The convergence behavior of the two algorithms
reveals a significant difference in both the final
optimized surface roughness (Ra) and the
efficiency of the search process. The ACO
algorithm demonstrates a smooth, asymptotic
Ra of
approximately 1.1610 and stabilizing at a final
value of 1.1544. In contrast, QACO achieves a
much lower

descent, starting from an initial

(superior) surface roughness,
starting its elite mean around 0.68 and
converging to a final value of approximately
0.4360. The objective function value with ACO
converges beyond 1000 iterations while with
QACO between 650 and 750

generations —the QACO algorithm proves to be

converges

far more effective for this specific optimization
task, as it finds a global minimum that is
significantly lower than that achieved by the
classical ACO.

When both the algorithms compared, it is
observed that algorithms converge at different
optimized values of surface roughness. QACO
significantly outperforms ACO in terms of
convergence speed, computational -efficiency
and optimization dynamics. This makes QACO
particularly  advantageous  for  turning
applications, where minimizing machining time
while achieving excellent surface finish is crucial.
The ability of QACO to reach optimal solutions
with less number of generations and minimum
surface roughness underscores the potential of
classical ACO as a more effective optimization

technique for process optimization problems.

4.1.2. Algorithmic differences

The primary difference between the two
approaches lies in their search mechanisms and
ACO
implementation uses a continuous gradient-
based
perturbations to find a local gradient, and the

parameter representation. Classical

approach  where ants generate
solution is updated using a momentum-based
fractional method with a fixed decay rate. On the

other hand, QACO algorithm utilizes quantum-
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inspired principles, representing pheromone
levels through qubits and employing a quantum
rotation gate for updates. This allow the QACO
to maintain a balance between exploration and
exploitation =~ more

effectively,  utilizing

polynomial decay for learning rates and noise to
avoid local optima, which ultimately leads to the
significantly better optimization results observed
in the surface roughness values.

4.1.3. Outcome differences in CNC Turning context

Aspect Classical Algorithm Quantum inspired Algorithm
(ACO) (QACO)
Final Surface Achieved slowly over many Achieved rapidly with higher
Roughness (Ra) generations precision
Optimization Requires high computation and Low computation time; ideal for
Efficiency setup time quick adjustments
Convergence Prone to slight oscillations and Smooth, monotonic, and highly stable
Stability less stable convergence
Risk of Local Higher risk; prone to stagnation in Lower risk; Qubit rotation avoids
Optima search premature convergence
Resource Moderate; higher energy/tool use High; quick tuning improves tool and
Efficiency due to long tuning energy efficiency
Industrial Primarily suited for offline Excellent for both offline and real-
Suitability optimization time/adaptive control
Repeatability Moderate; sensitive to initial High; consistently demonstrates
parameter tuning stable optimization
5. Conclusion efficient. The study paves the way for quantum-

In this work, CNC Turning process is
considered for optimization and PR, SVR and RF
techniques from classical ML are employed to
model the process, based on the dataset prepared
from the experimental observations. The best-fit
ML technique, PR is implemented to model the
process and regression analysis is carried out to
determine the regression coefficients. The
validated models of both the responses are
utilized in the process of optimization. ACO and
Quantum inspired ACO algorithms are used to
optimize the process parameters and the
outcomes are compared.

Traditional approach takes a bit long
time to process than Quantum inspired approach
which took very less time. Quantum inspired
ACO outperforms classical ACO in terms of
convergence speed; optimization quality;
stability of solution and found quantum inspired
ACO is more effective for minimizing surface

roughness (Ra) while being computationally

accelerated intelligent machining systems.
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