

Special issue**ISSN: 2321-7758**

Fingerprint-based diabetes prediction system using ML

M. Sujana Priya Darshini¹ and Nookala Madhavilatha²¹ Department of CSE-AI, Pydah College of Engineering (A), Kakinada-533001, India.² Department of CSE, Pydah College of Engineering (A), Kakinada-533001, India.**Corresponding Author:** Email: msujana135@gmail.comDOI: [10.33329/ijoer.14.S1.139](https://doi.org/10.33329/ijoer.14.S1.139)**Abstract**

This development offerings "Finger Diab," a non-invasive, actual diabetes risk estimate organization that disturbs health structures and biometric fingerprint data. This method usages fingerprint image processing to abstract physical markers like ridge total and fingerprint kind (arch, loop, whorl), which are related with diabetes risk, in difference to old-style approaches that trust on blood sample and medical lab examinations.

To regulate risk stages—LOW-SLUNG, AVERAGE, or HIGH—an Unintentional Forest Classifier qualified on a labelled dataset connections this biometric contribution with extra limitations like age, BMI, and family history.

Keywords: Diabetes Risk Estimate, Fingerprint Biostatistics, Non-invasive Analysis, Machine Learning, Unintentional Forestry Classifier, Fingerprint Image Processing, Ridge Design Examination, Biometric Health Monitoring, Initial Illness Discovery, Projecting Health care Schemes.

1. Introduction:

Because of its long-term complications and rising incidence in all age groups, diabetes mellitus has become one of the most common chronic metabolic disorders in the world, placing a heavy burden on public health systems. Effective disease management and prevention depend on early detection and ongoing risk assessment. However, invasive blood tests, laboratory infrastructure, and recurring clinical visits are the main components of conventional diagnostic approaches, which may restrict accessibility, raise costs, and postpone timely involvement—particularly in surroundings with incomplete properties.

Recent growths in machine learning and biometric study have formed new chances for real-time, non-invasive health monitoring structures. Fingerprint outlines are one of the many biometric features that can be used to recognize biological and metabolic circumstances since they are stable through a personality's life and are predisposed by genetics. Certain fingerprint traits, such as ridge density and pattern types, have been linked in studies to a higher risk of emerging certain illnesses, such as diabetes.

The current development presents "Finger Diab," a leading-edge non-invasive diabetes hazard estimate system that uses machine learning and fingerprint image handing

out to efficiently and exactly control diabetes risk.

2. Methodology

The upcoming “Finger Diab” system follows an organized practice that participates biometric fingerprint examination with machine learning techniques to forecast diabetes risk in a non-invasive way. The general work flow contains of data achievement, fingerprint image preprocessing, feature abstraction, dataset combination, model exercise, and risk classification.

2.1 Data Procurement

Fingerprint imageries were composed using a normal visual fingerprint sensor to confirm unchanging image excellence and resolve. In adding to biometric figures, related demographic, and medical abilities—such as age, body mass catalog (BMI), gender, and household history of diabetes—were collected over a organized review. All collected data were anonymized to reservation privacy and moral obedience.

2.2 Fingerprint Image Preprocessing

The learnt fingerprint images experienced preprocessing to recover worth and remove noise. This period comprised grayscale adaptation, image steadiness, ridge improvement by means of clarifying methods, and binarization. Thinning procedures were then applied to obtain clear ridge meetings, allowing feature concept.

2.3 Feature Concept

Important fingerprint constructions connected with diabetes risk were detached from the achieved imageries. These elaborate ridge count, ridge density, and fingerprint pattern type (arch, loop, or whorl). Project group was achieved using physical examination of ridge flow and core-delta documentation. The extracted biometric features were converted into numerical pictures suitable for machine learning effort.

2.4 Dataset Integration and Labelling

Biometric structures were combined with demographic and health-related limits to form a united dataset. Each greatest was labelled with a diabetes risk equal—LOW, AVERAGE, or HIGH—based on clinical positions and expert-defined beginnings. This labelling allowed overseen knowledge for model growth.

2.5 Model Training and Arrangement

An Unintentional Forestry Classifier was employed to learn composite relations among fingerprint structures and diabetes danger stages. The classical was qualified using a divided dataset, with discrete subsections for exercise and challenging. Collaborative knowledge inside the classifier better forecast correctness and summary overfitting.

2.6 Risk Calculation and Production Generation

Once skilled, the model predicts the diabetes risk category for new users in real time. The system procedures fingerprint input and supplementary limits to make an explainable risk level, provided that a quick and non-invasive assessment tool that can assist in early broadcast and precautionary healthcare decision-making.

3. Discussion

The future “Finger Diab” scheme validates the possible of fingerprint biometrics as a feasible non-invasive pointer for diabetes risk estimate. By participating fingerprint image structures with demographic and existence limitations, the system offers an substitute method to old-style diagnostic approaches that depend on invasive blood sample and laboratory-based testing. The conclusions highpoint that biometric traits, when joint with machine learning methods, can donate expressively to initial risk valuation and defensive healthcare.

The use of fingerprint features such as ridge amount, ridge thickness, and pattern type (arch, loop, and whorl) presented distinguished

relations with diabetes risk groups. These structures, which are inherently prejudiced and continue steady through a person's era, offer constancy and dependability for prognostic modelling. When increased with extra limitations like age, BMI, and family history, the prognostic competence of the system better-quality meaningfully, representative that a mixture biometric-clinical method is more actual than trusting on a only data source.

The Unintentional Forestry Classifier showed real in treatment multidimensional contribution data and taking non-linear relations between structures. Its ensemble-based learning machine summary overfitting and improved arrangement constancy crossways LOW, MEDIUM, and HIGH risk groups. The model's ability to generate real-time forecasts makes the system principally appropriate for important transmission and community-based healthcare surroundings.

Overall, the results sustenance the possibility of using fingerprint biometrics joint with machine learning as an pioneering, non-invasive style for early diabetes risk estimate, contributively to active and protective healthcare approaches.

3.1 Machine Learning Algorithms Considered

Several supervised learning algorithms were discovered owed to their established presentation in medical estimate tasks:

- Logistic Regression (LR): Used as a starting point classical to recognize linear associations among contribution structures and diabetes risk.
- Support Vector Machine (SVM): Pragmatic to detention compound conclusion limitations among dissimilar risk modules.
- K-Nearest Neighbors (KNN): Applied to estimate similarity-based organization consuming biometric and health structures.
- Decision Tree (DT): Applied to deliver interpretability and feature position understandings.
- Accidental Forest Classifier (AFC): An ensemble-based method that syndicates several conclusion trees to progress estimate accurateness and toughness.

The consequences specify that collaborative knowledge meaningfully improves cataloguing presentation. While meeker replicas such as Logistic Deterioration deliver interpretability, they fail to detention composite biometric-health connections. The Unintentional Forestry Classifier outstripped all additional replicas, attaining the uppermost correctness and composed exactness-recollection standards.

Feature Type	Description	Contribution Level
Ridge Total	Number of ridges in fingerprint	High-Level
Ridge Thickness	Ridges per unit area	High-Level
Fingerprint Shape Type	Arch / Loop / Whorl	Medium-Level
Age	User age	High-Level
BMI	Body Mass Index	High-Level
Household History	Genetic predisposition to diabetes	Medium-Level
Sex	Male / Female	Low-Level

4. Conclusion

This learning obtainable "Finger Diab", a original non-invasive scheme for diabetes risk

estimate that participates fingerprint biometric examination with machine learning methods. By leveraging steady and hereditarily predisposed fingerprint structures such as ridge total, ridge thickness, and shape type, along with demographic and health-related limitations, the projected method proposals an operative substitute to conservative offensive analytical approaches.

References

- [1]. Breiman, L. (2001). Random forests. *Machine Learning*, 45(1), 5-32. <https://doi.org/10.1023/A:1010933404324>
- [2]. Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. *Journal of Machine Learning Research*, 3, 1157-1182.
- [3]. Jain, R., Mukherjee, S., Bandyopadhyay, S., & Basu, T. (2023). *Gender-based comparative study of Type 2 diabetes risk factors in Kolkata, India: A machine learning approach*. arXiv. <https://arxiv.org/abs/2311.11018>
- [4]. Kumar, A., & Zhou, Y. (2012). Human identification using fingerprint images. *IEEE Transactions on Image Processing*, 21(4), 2228-2244. <https://doi.org/10.1109/TIP.2011.2180939>
- [5]. Pradhan, A., Sahu, R. K., & Dash, S. (2017). A survey on machine learning techniques for diabetes prediction. *International Journal of Computer Applications*, 170(8), 1-6.
- [6]. Shankar, K., Lakshmanaprabu, S. K., & Gupta, D. (2019). Hybrid machine learning approach for disease diagnosis using biometric features. *Journal of Biomedical Informatics*, 96, 103-110. <https://doi.org/10.1016/j.jbi.2019.103110>
- [7]. Shetty, L., Shah, D., Sharma, A., Gunjal, A., Gidwani, M., & Patel, B. (2023). Diabetes detection system using machine learning techniques. *International Journal for Research in Applied Science & Engineering Technology (IJRASET)*, 11(10), 127-135. <https://doi.org/10.22214/ijraset.2023.55988>