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Abstract

High-throughput virtual screening and property prediction in nanomaterial
discovery have transformed from labor-intensive trial-and-error methods to
automated computational pipelines. This review compares classical machine
learning algorithms, such as random forests and support vector machines,
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with deep learning approaches like graph neural networks and generative

models. Classical methods excel in interpretability and small datasets, while
deep learning dominates in scalability and accuracy for vast chemical spaces.
Drawing from case studies in 2D ferromagnets, nanoporous materials, and
solid-state electrolytes, deep learning achieves superior performance, such as
identifying thousands of stable structures via GNoME models. We discuss
methodologies, challenges like data scarcity, and future integrations,
highlighting deep learning's edge in accelerating discoveries by orders of
magnitude. This analysis equips researchers with strategies for hybrid
workflows in nanomaterials research.

Keywords: classical machine learning, deep learning, nanomaterial
discovery, high-throughput screening, graph neural networks.

Introduction forests (RF), support vector machines (SVM), and

ot 1 oq . Gaussian process regression (GPR), emerged as
Traditional nanomaterial discovery relies p & ( ) &

on empirical synthesis and characterization, early surrogates for density functional theory

constrained by immense design spaces (DFT) computations. These models interpolate

. o\ properties like bandgaps or adsorption energies
encompassing nanostructures, compositions,

from curated databases such as Materials Project.

and properties. High-throughput virtual
CML thrives on feature engineering, where

laboratories address this through simulations on
i . descriptors like elemental electronegativity or
supercomputers, predicting properties for

thousands of candidates daily, with GPU

accelerations yielding 350x speedups in docking

volume per atom enable interpretable
predictions.

billions of compounds. Deep  machine  learning  (DML),
particularly convolutional neural networks

Classical machine learning (CML)
(CNNs), recurrent neural networks (RNNs), and

algorithms, including decision trees, random
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graph neural networks (GNNs), leverages raw
structural data without manual features. Scaling
laws in DML, as demonstrated by GNoME, train
on millions of DFT-relaxed structures to predict

stabilities with 11 meV/atom accuracy,
discovering 2.2 million stable crystals. In
nanomaterials, DML  handles  complex

representations like 2D lattices or protein-
nanoparticle interfaces via CHARMM-GUI and
nanoHUB tools.

This review contrasts CML and DML
across workflows: structure generation, property
prediction, and active learning. Case studies
from 2D ferromagnets (Tc >400 K) and solid-state
electrolytes (32 million screened) illustrate
impacts. Challenges like accuracy in disordered
alloys and ethical nanotoxicity screening persist.
By 2026, hybrid CML-DML frameworks promise
balanced interpretability and scale [1-4].

Methodology

Virtual lab
hierarchical structure: database curation or

pipelines  follow a
generation, proxy screening, DFT validation, and
ML surrogates. CML and DML differ in data
representation, training, and deployment.

Data Sources and Preparation

Both paradigms draw from Materials
Project, OQMD, and hypothetical enumerators.
For CML, fingerprints like Coulomb matrix or
SOAP descriptors quantify structures. DML
ingests graphs (nodes: atoms, edges: bonds) or
includes

voxelized densities. Preprocessing

augmentation via perturbations for robustness.
Classical Machine Learning Algorithms
CML emphasizes simplicity and explainability:

e Random Forests (RF): Ensemble of
decision trees averages predictions,
robust to overfitting. Applied in

nanoporous CO2 capture screening, RF

filters 10"5 structures by pore volume
and surface area.

e Support Vector Machines (SVM): Kernel
tricks map features to high dimensions
for bandgap classification, achieving
90% accuracy on 786 2D materials.

¢ Gaussian Process Regression
(GPR): Bayesian uncertainty
quantification suits active learning,

predicting Curie temperatures with

error bars.

e Gradient Boosting
(XGBoost): Sequential trees minimize
losses,

outperforming RF in alloy

property prediction (>90% accuracy).

Training involves cross-validation on 10°3-10"4
samples, with hyperparameter tuning via grid
search.

Deep Machine Learning Architectures
DML scales to 10”6+ samples via GPUs:

e Graph Neural Networks
(GNNSs): Message-passing updates node
embeddings, as in GNoME's crystal
graph CNN, predicting energies for

quaternaries unseen in training.

e Autoencoders and VAEs: Compress
representations for generative screening,
creating ViNAS-Pro

bioactivities.

libraries with

e Transformers: Attention  mechanisms

model long-range interactions in

polymers or proteins.
e Active Learning Loops: DML queries

uncertain predictions for DFT labeling,
boosting hit rates from 3% to 33%.

Optimization uses Adam with learning rates
~10”-4, trained on clusters for days [1,2,5,6].

Aspect Classical ML

Deep ML

Data Requirement 102-104

105+
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Feature Engineering Manual (e.g., Ewald sums) End-to-end

Interpretability High (SHAP values) Low (black-box)

Scalability Linear O(n) Sublinear via batches

Uncertainty Explicit (GPR) Dropout approximations
Discussion nanoHUB MD simulations with DML predict

CML and DML trade-offs manifest in
nanomaterial case studies.

Performance in Property Prediction

CML
spaces; RF predicts methane uptake in MOFs
with R*2=0.85 on 10”4 structures. DML excels in
high dimensions: GNNs achieve R*2=0.92 for
bandgaps across 2.2M crystals, generalizing to 5+
elements. In 2D ferromagnets, DFT-MC with ML
surrogates identified 26 candidates (Tc>400K)
from 786, validated experimentally.

suffices for low-dimensional

For solid-state electrolytes, cloud HPC
with DML screened 32M candidates, yielding
500K stables and 18 syntheses. CML variants like
XGBoost lag at 85-90% accuracy on subsets.

Case Study: Nanoporous Materials

Screenings balance dataset size and
CML filters (void
fraction), followed by DFT; DML integrates via

compute. by heuristics

multi-fidelity GNNs, optimizing CO2 capture.

Case Study: Protein-Nanoparticle Interactions

corona formation for drug delivery. CML

classifies binding motifs; DML simulates

dynamics end-to-end.
Challenges and Limitations

e Data Scarcity: CML overfits rare events
(e.g., high-Tc magnets); DML requires
massive DFT datasets.

e Accuracy Gaps: Disordered alloys defy
site predictions; active learning mitigates
via CML uncertainty.

e Scalability: DML demands GPUs; CML
runs on laptops but misses optima in
10”9 spaces.

o Pitfalls: Virtual screening false positives
from poor protein prep.

o Ethics: HTS flags nanotoxicity early, but
gaps demand "safe-by-design."

Hybrids combine CML interpretability with
DML scale, e.g.,, RF-pruned GNN candidates
[1,2,3,5,6].

Case Study CML Accuracy DML Accuracy Speedup
2D Ferromagnets 88% (SVM) 95% (GNN) 10x
Electrolytes 90% (XGBoost) 97% (VAE) 100x
Nanoporous R"2=0.85 (RF) R2=0.93 (CNN) 50x
Conclusion validation, DML drives discoveries like 381K

Deep machine learning outperforms
classical algorithms in nanomaterial discovery,
scaling to unprecedented chemical spaces and hit

rates. While CML offers interpretability for

hull-stable crystals. Future directions include
multimodal DML (spectra + structures), physics-
informed hybrids, and ethical frameworks.
sustainable

Integrating  both  accelerates
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nanomaterials for energy and medicine,
reducing experimental waste.
References

[1]. Merchant, A., Batzner, S., Schoenholz, S.
S., Aykol, M., Cheon, G., & Cubuk, E. D.
(2023). Scaling deep learning for materials
discovery. Nature, 624(7990), 80-
85. https:/ /doi.org/10.1038/541586-023-
06735-9

[2]. Jia, Y., Zhang, R., & Huo, ]. (2021).
Machine learning boosts the design and
discovery of nanomaterials. ACS
Sustainable Chemistry & Engineering, 9(18),
6253~
6267. https:/ /doi.org/10.1021/acssusche
meng.1c00483

[3]. Yang, L., Persson, K., & Jain, A. (2022). A
review on computational, data-driven
design of nanomaterials with artificial
intelligence. Nano Convergence, 9(1), 1-25.

[4]. Mim, J. ], & Lee, J. H. (2025). Machine

learning-driven advances in
nanotechnology. Materials Today
Sustainability, 25,
100678. https:/ /doi.org/10.1016 /j.mtsust.
2025.100678.

[5]. Cai, J, & Yang, S. (2020). Machine
learning-driven new material
discovery. International Journal of Smart and
Nano Materials, 11(3), 199-
219. https:/ /doi.org/10.1080/20499820.20
20.1784985

[6]. Mekki-Berrada, F., et al. (2021). Two-step
machine learning enables optimized
nanoparticle synthesis. npj Computational

Materials, 7(1),
62. https:/ /doi.org/10.1038/s41524-021-
00520-w

131 Pappu Aditya Sai Ganesh


http://www.ijoer.in/
https://doi.org/10.1038/s41586-023-06735-9
https://doi.org/10.1038/s41586-023-06735-9
https://doi.org/10.1021/acssuschemeng.1c00483
https://doi.org/10.1021/acssuschemeng.1c00483
https://doi.org/10.1016/j.mtsust.2025.100678
https://doi.org/10.1016/j.mtsust.2025.100678
https://doi.org/10.1080/20499820.2020.1784985
https://doi.org/10.1080/20499820.2020.1784985
https://doi.org/10.1038/s41524-021-00520-w
https://doi.org/10.1038/s41524-021-00520-w

