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Abstract

The design of nanomaterials demands navigating vast chemical spaces
exceeding 100 configurations, traditionally constrained by trial-and-error
synthesis and characterization limits. In silico nano-architects —leveraging
high-throughput computational pipelines, machine learning surrogates, and
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multiscale simulations—enable virtual construction of structures with

tailored properties for energy, biomedicine, and catalysis. This review
outlines bits-to-atoms workflows from structure generation via ViNAS-Pro
to robotic validation, benchmarks case studies like DFT-MC discovery of 26
high-Tc 2D ferromagnets from 786 candidates, and tackles challenges from
data scarcity to interpretability. Accelerations of 104 in screening and 70%
cycle reductions herald sustainable materials revolutions by 2030.

Keywords: in silico design, high-throughput screening, ML force fields, bits-
to-atoms, multiscale modelling

Introduction genetic  algorithms, fuzzy logic—optimize

Nanomaterials redefine functionality nanophotonics and storage. By January 2026,

through atomic precision: 2D ferromagnets self-driving labs like LUMI close loops, slashing

sustain magnetism above 400 K, MOFs optimize experiments  70%.  This review  details

. , .
gas storage, and NP coronas dictate drug methodologies for tomorrow's architects, from

delivery. Yet, empirical design falters amid virtual libraries to autonomous synthesis,
complexity —disordered alloys, dynamic

interfaces, quantum correlations. Computational

forecasting green impacts.[Kabiraj, A. et al
(2020)][He, B. et al. (2020)][Qi, R. et al. (2022)]

nano-architects invert this: supercomputers Methodology
enumerate billions de'uly, GI.DU d'ockmg yl-e.lds In silico design iterates generation,
350x speedups, Materials Project filters stability,

; ] ) o screening, prediction, optimization, and
and ViNAS-Pro predicts bioactivity.

deployment.

Pivotal validations include screening 786
2D materials via DFT-MC to identify 26 high-Tc
ferromagnets, cloud HPC narrowing 32 million Hypothetical =~ enumerators integrate
electrolytes to 500,000 stables for 18 syntheses, Materials  Project/OQMD data; ViNAS-Pro
and CHARMM-GUI modeling protein-NP generates bioactivity-forecast libraries.
interactions. Soft computing hybrids—ML, Hierarchical filters start with classical proxies
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(e.g., MOF pore volumes), escalating to DFT for
electronics; RF/GNN surrogates handle billions
on GPUs.[Wang, T. et al. (2024)][Vanduyfhuys,
R. et al. (2022)][GPU Engines (2025)]

Prediction and Multiscale Simulations

DFT-PBE
Heisenberg MC assesses 2D magnetism.
CHARMM-GUI automates solvated MD for
nanostructures; QM/MM hybrids
interfaces; MLFFs extend timescales 1076-fold
for supercapacitors, capturing co-ion
effects.[Kabiraj, A. et al. (2020)][Qi, R. et al.
(2022)][Bi, S. et al. (2024)]

computes bandgaps;

resolve

Optimization and Closure

RE/SVM predict CO2 uptake (R?=0.85);
GPR uncertainty drives DFT sampling. GNoME
GNNs achieve +1 meV/atom; VAEs enable
inverse design; GAs perform multi-objective
tuning. Cloud HPC with Bayesian optimization
feeds robotic labs for autonomous testing.[Soft
Computing Review (2025)][Glaser, J. et al. (2021)]

Pipeline In Silico | Lab Acceler
Stage Capacity | Synthe | ation
sis
Generation/ | 1079 1012 10M4x
Screening structure | trials/ [He, B.
s/day month |et al
(2020)]
Property GNN #1 | XRD/E | 100x
Prediction meV/ato | XAFS [Merch
m ant, A.
et al
(2023)]
Optimization | Active Trial- 70%
learning | and- fewer
loops error cycles
[Bi, S. et
al.
(2024)]
Discussion

Case studies validate architectural prowess;
challenges spur innovation.

Transformative Designs

High-Tc 2D Ferromagnets: DFT-MC on
786 vyields 26 with Tc>400 K; ML
surrogates reduce compute 10x.[Kabiraj,
A. etal. (2020)]

Nanoporous  Materials: Multi-fidelity
screening tunes MOFs for
CH4/CO2.[Vanduyfhuys, R. et al

(2022)]

Solid Electrolytes: 32M candidates to
500K stables to 18 syntheses; MLFFs

simulate intercalation.[He, B. et al.
(2020)]
Biomedical NPs: CHARMM-

GUI/nanoHUB for coronae; ViNAS-Pro
aids 42% drug delivery gains.[Qi, R. etal.
(2022)][Wang, T. et al. (2024)]

Supercapacitors: QM/MM+ML
uncovers co-ion dynamics.[Bi, S. et al.
(2024)]

GNoME's 2.2M crystals obey scaling

laws; hybrids excel in
catalysis/energy.[Soft Computing
Review (2025)]

Emerging Architectures

CG-MD bridges scales for NP-protein interfaces;

Nano-QSAR predicts toxicity; robotics executes

recipes autonomously.[Glaser, J. et al. (2021)]

Key Challenges
Challenge In Silico | Experiment
Solution al Link
Data Scarcity | Transfer/activ | Shared
e learning databases
[Merchant,
A. et al
(2023)]
Predictive MLFFs/QM/ Closed-loop
Accuracy MM hybrids labs [He, B.
et al. (2020)]
Interpretabili | SHAP+GNN Uncertainty
ty hybrids quantificati
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on [Soft
Computing
Review

(2025)]

Structural Physics- High-

informed throughput

MLEFFs

Disorder
validation

[Kabiraj, A.
et al. (2020)]

Ethical
Design

Toxicity HTS
models

Real-world
assays [Qi,
R. et al
(2022)]

Industry  scales  batteries/catalysts; 2026

conferences spotlight quantum-nano synergies.
Conclusion

Nano-architects craft tomorrow's

materials virtually, from ferromagnets to
electrolytes, with unprecedented precision and
speed. Pipelines deliver 10"4x gains, active
learning curtails trials, and autonomy bridges
simulation to synthesis. Futures promise
sustainable energy, targeted therapeutics, and
ethical
databases and scalable compute. [Bi, S. et al.

(2024)][Glaser, J. et al. (2021)]

innovation—democratized by open
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