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Abstract

Nanomaterial development faces immense design spaces constrained by
experimental trial-and-error. Hybrid quantum-classical simulations bridge
this gap, merging quantum mechanics for accurate electron correlations with
classical scalability for multiscale modeling. This review synthesizes
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workflows from DFT-QM/MM hybrids to emerging quantum algorithm

integrations, benchmarks impact via case studies like 2D ferromagnets and
electrolytes, and forecasts closed-loop revolutions in green materials by 2030.
Pivotal tools like CHARMM-GUI, ViNAS-Pro, and ML force fields enable
10"4x accelerations, tackling challenges from disordered alloys to
nanotoxicity.
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Introduction

Traditional nanomaterial synthesis relies

on  empirical  methods, limited by
characterization bottlenecks and vast chemical
spaces exceeding 10760 possibilities for simple
motifs. Computational pipelines revolutionize
this "bits-to-atoms" paradigm: virtual screening
simulates billions of structures daily via
supercomputers, with GPU-accelerated docking
Databases like
Materials Project filter thermodynamic stability,
ViNAS-Pro

predicted libraries for biomedicine.

achieving 350x speedups.

while generates  bioactivity-

Hybrid quantum-classical approaches
elevate precision. Density Functional Theory

(DFT) provides bandgap and magnetic

predictions, but fails strongly correlated systems;
QM/MM hybrids embed quantum regions in
classical fields for interfaces. Machine learning
force fields (MLFFs) extend MD timescales 10°6-
fold, as in supercapacitor electrodes. Recent
advances, including DFT-MC screening 786 2D
materials to identify 26 high-Tc ferromagnets
(>400 K),
experiments. Cloud HPC processes 32 million

validate computations against
electrolytes, yielding 500,000 stables and guiding
18 syntheses. By January 2026, self-driving labs
integrate robotics, slashing cycles 70%. This
review dissects methodologies, case studies,
hurdles, and scalable futures in energy, catalysis,
and nanomedicine. [Kabiraj, A. et al. (2020)][He,

B. et al. (2020)][Qi, R. et al. (2022)]
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Methodology

Bits-to-atoms pipelines iterate

generation, prediction, optimization, and

synthesis.
Computational Generation and Screening

Hypothetical enumerators seed libraries
from Materials Project/ OQMD data; VINAS-Pro
forecasts bioactivity. Hierarchical filters apply
classical proxies (e.g., pore volume for MOFs)
before DFT electronics; random forests (RF) and
(GNNs)
billions via GPU engines. [Wang, T. et al
(2024)][GPU Engines (2025)][Vanduyfhuys, R. et
al. (2022)]

graph neural networks surrogate

Property Prediction and Simulations

2D magnetism. CHARMM-GUI automates all-
atom MD with solvation/force fields for
OM/MM  hybrids
interfaces, MLFFs scale to supercapacitors.
[Kabiraj, A. et al. (2020)][Qi, R. et al. (2022)]

nanostructures; probe

Optimization and Active Learning

RE/SVM predict CO2 uptake (R?=0.85);
Gaussian process regression (GPR) quantifies
uncertainty for DFT queries. GNoME GNNs
achieve *1 meV/atom energies; variational
autoencoders (VAEs) inverse-design; genetic
algorithms (GA) multi-objective tune. Bayesian
hyperparameter optimization deploys on cloud
HPC. Robotic closure via LUMI self-driving labs
tests ML candidates autonomously. [Soft
Computing Review (2025)][Glaser, ]. et al. (2021)]

DFT (PBE functional) computes
bandgaps; Heisenberg Monte Carlo (MC) models
Stage Bits (Compute) Atoms (Experiment) | Acceleration
Screening 10°/day 102/month 10* [He, B. et al. (2020)]
Prediction GNN +1 meV/atom | XRD/EXAFS 100x [Merchant, A. et al. (2023)]
Optimization | Active learning Trial-error 70% cycles [Bi, S. et al. (2024)]

Quantum hybrids extend this: variational
quantum eigen solvers (VQE) on NISQ devices
solve Hubbard models for correlated electrons,
hybridized with classical DFT for bandgaps in

periodic lattices.
Discussion

Validated discoveries reveal synergies and
hurdles.

Transformative Case Studies

e 2D Ferromagnets: DFT-MC screens 786,
identifies 26 with Tc>400 K; ML
surrogates cut compute 10x. [Kabiraj, A.
et al. (2020)]

e Nanoporous Storage: Multi-fidelity
MOF screening optimizes CH4/CO2 via
pore metrics and DFT. [Vanduyfhuys, R.
et al. (2022)]

e  Electrolytes: 32M—500K stables—18
syntheses; MLFFs model intercalation.
[He, B. et al. (2020)]

e Biomedicine NPs: CHARMM-
GUI/nanoHUB predict coronae; TuNa-
Al boosts drug delivery 42%. [Qi, R. et al.
(2022)]

e  Supercapacitors: QM/MM + ML reveals
co-ion effects. [Bi, S. et al. (2024)]
GNoME's 2.2M crystals follow scaling
laws; ML+GA+fuzzy logic excels in
catalysis. [Soft
(2025)]

Computing Review

Emerging Insights

Multiscale CG-MD refines NP-protein dynamics.
Nano-QSAR predicts cytotoxicity; active loops
combat data scarcity. Robotic platforms close
loops end-to-end. [Glaser, ]. et al. (2021)]
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Critical Challenges Article 30.
Challenge Computational Fix Experixﬂgﬁlfjai{ Bﬁgge' O /
4-020-0300-
Data Scarcity Transfer/active learning Shqred d®tabBsgsines. (2025). Virtual screening and
Accuracy Gaps MLFFs/QM/MM Closed—tfcébag{‘blé%%tiglsufﬁgf B. ebf’gfl&dfb:)’] FHved
entral.
Interpretability Hybrid models Uncertqiﬁﬁysgrppﬁgaﬁ@m,{ﬁgﬁr@ggmy@mg&@yipw
(SHAP+GNN) (2025)] MC12646499/
Disordered MLFFs + physics constraints HI5 vaftbatiSe [Iggbi%gj, Azean (%6‘)1]?1\/1’1\/1_6”1
nanoparticle builder for  biological and
Alloys
materials simulations. Journal of Chemical
Ethics Nanotoxicity HTS Validatm(g?pgr[@'@ﬁnggg;ﬁ@g@gb)l 4341-4355.

Industry scales batteries/catalysts; quantum-
Hybrid
quantum-classical VQE tackles SIAM for electron

nano conferences herald futures.

correlations, observing Mott transitions.
Conclusion

Hybrid approaches shatter classical

bounds, enabling precise nanomaterial
simulations at unprecedented scales. From DFT-
QM/MM

validated pipelines forecast green revolutions:

MC ferromagnets to coronae,
70% faster cycles, targeted high-Tc materials,
ethical nanotoxicity screening. Quantum leaps
via VQE hybrids promise correlated systems
beyond classical reach, with industry adoption in
by 2030. Shared databases and
autonomy will democratize discovery, bridging

batteries

bits to atoms sustainably. [Merchant, A. et al.
(2023)]
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