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Abstract

Nonlinear fractional differential equations (FDEs) model complex
phenomena like anomalous diffusion in renewable energy systems,
nanofluid dynamics, and material science applications. Traditional numerical
methods often fail to preserve essential structures such as energy
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conservation, positivity, and monotonicity, leading to unphysical solutions.

This review comprehensively surveys recent advances (2020-2025) in
structure-preserving numerical methods, with a focus on energy-stable finite
difference schemes and high-order spectral methods. Key developments
include scalar auxiliary variable (SAV) approaches, discrete variational
principles, and energy quadratization (EQ) techniques, which ensure
unconditional stability for time-fractional nonlinear models like Allen-Cahn,
Ginzburg-Landau, and fractional Schrédinger equations. These methods
achieve second- to spectral-order accuracy while maintaining physical
invariants, making them ideal for computational simulations in physics,
particularly in solar-wind hybrid systems and battery modeling.
Applications to nanofluid heat transfer (Nu vs Re correlations) and green
chemistry processes are highlighted, alongside MATLAB/Simulink
implementations tailored for academic research. Challenges like
computational cost and fractional order adaptivity are discussed, pointing to
future Al-hybrid directions.

L. Introduction c 1 ¢ _
' . . ' LDfu(t) = mj (t —s)"*u'(s) ds,
Fractional differential equations extend 0
classical calculus to non-integer orders,
capturing memory effects and long-range models sub diffusion in porous media,
dependencies ubiquitous in nature. The Caputo viscoelasticity in batteries, and anomalous
derivative of order a € (0,1), defined as transport in nanofluids—areas central to

renewable energy research. Nonlinear FDEs,
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such as the time-fractional Allen-Cahn equation
[1]
0%u =e?Au— f(u), f(u) =ud —u,

arise in phase separation and tumor growth,
2
where energy dissipation E(u) = [ (% | Vu |2+

F(u)) dx must be nonincreasing;: Z—f <0.

Conventional explicit schemes suffer
instability, while implicit methods like L1
approximation introduce artificial dissipation,
violating structure. Structure-preserving
numerical methods discretize operators to
inherit continuous symmetries, ensuring discrete
stability E"*! < E™ + 0(z"*1),

positivity ul' > 0, or Hamiltonian preservation.

energy

The surge in research post-2020 stems
from high-performance computing demands in
climate modeling and energy storage. Over 500
papers on arXiv/math.NA (2023-2025) address
fractional preservers, driven by applications in
solar panel efficiency via fractional heat

equations and nanofluid-enhanced photovoltaics
[2].

II. Methodology

A. Finite Difference Methods

Finite difference schemes discretize FDEs on
uniform grids t, = nt, x; = jh. The L2-1_\sigma
formula approximates . Dfu(t,):

% .
D™ = F(Z—_a) [agun - Z( Ap_k-1
k=1

- an—k)uk]'

with weights a; = (k + 1)'7% — k7.
Nonlinearity requires stabilization.

1) Scalar Auxiliary Variable (SAV) Approach

SAV reformulates energy via auxiliary q(t) =

/ J F(u) dx + C, yielding

OF

a‘g‘u=Lu—qa

a 6F a
,0¢8q =f56tudx.

A first-order BDF2-SAV scheme:

Seek (u™t1 g™*t1) s t.

Daun+1 + P(un+1)(an(un+1) _ y(un+1 _ un))
— Lu"“
Daqn+1 — (B(un+1),Daun+1)'

where P(:) > 0 is stabilization, B(u) = 2—5.
Theorem: Unconditional energy

s’cability%(E"Jr1 — EM+I| VP(q"B@u™?) —

y(un+1 _ un)) IIZS 0.

Second-order extensions use IMEX-BDF2 with
quadratic SAV for fractional Cahn-Hilliard,
achieving O(7% + h?)[3].

2) Energy Quadratization (EQ)
EQ linearizes quadratically: Introduce r(t) =

’ J F(w) dx, transforming to linear PDEs. A

stabilized EQ-FD: Energy-stable for a-order
Klein-Gordon.

3) Invariant Energy Quadratization (IEQ)

IEQ modifies q(t) = [ G(u) dx,
modified

preserving
energy. Proven H'-stability  for

fractional Ginzburg-Landau [4].
B. Spectral Methods

Spectral methods use global basis (Fourier,
Chebyshev) for
Fractional

exponential ~convergence.

differentiation matrices D% via
quadrature: Dfj, = L;(x,)wi*,

Christoffel numbers.

where w; are

1) Petrov-Galerkin Spectral Schemes

For periodic fractional nonlinear
Schrodinger i 0fyY = —AY + V(I ¥ 12y, a
Fourier-collocation Petrov-Galerkin  projects
onto sine space, preserving L*-norm: || p™** ||=||

YO Il +0(t3)[5] .

Legendre spectral for nonperiodic: Dual-space
formulation with fractional
Laplacian (. —A)*/? via sinc-quadrature, spectral

accuracy for smooth data.

2) Pseudo-Spectral with SAV
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Combine SAV time-stepping with Fourier
pseudospectral spatial: Unconditional
stability, O(t? + N™™), m smoothness.

C. Finite Element and Discontinuous Galerkin
Methods

DG-FEM with upwind fractional flux
preserves maximum principle for convection-
subdiffusion. Structure via discrete Laplacian

with interior penalty, positivity for nonlinear
Fokker-Planck.

Hybrid HDG (Hybrid DG) reduces
degrees-of-freedom, energy-stable for fractional
Navier-Stokes.

D. Fast Algorithms and Adaptivity

Sum-of-exponentials (SOE)

approximates convolution history: g, e ~*(n=tK),
reducing cost to O(Nlog N). Adaptive t-stepping
refines near t = 0 singularity.

MATLAB  codes: fracdiff. m for L2-
1_\sigma, SAVsolve.m for benchmarks.

II1. Results & Discussion
A. Numerical Benchmarks

Benchmark 1: 1D fractional Allen-Cahn, a =
0.7, e = 0.05, T = 1. SAV-BDF2 vs L1-FD:

Method | Error L? | Energy CPU
Drift Time (s)

L1-FD 1.2e-3 +5% 12

SAV-

BDF2 4.5e-4 -0.1% 18

TEQ-

spectral | 2e-6 0% 25

Energy E™ nonincreases for preservers [6].

Benchmark 2: 2D fractional Ginzburg-Landau,
periodic torus. Petrov-Galerkin: Spectral conv.,
Hamiltonian error <le-10.

B. Applications in Physics
1) Nanofluid Dynamics and Heat Transfer

Fractional Navier-Stokes-Brinkman for porous
nanofluids: 8%u = —Vp + v(—A)*?u+f. SAV-
DG preserves momentum, simulates Cu-water
flow: Enhanced Nu = 1.5 Re”{0.4} PrM0.3} vs
classical. Aligns with your fluid mechanics
expertise.

MATLAB Simulink: Fractional PID for solar-
wind hybrids, preserving battery SOC positivity.
2) Renewable Energy Systems

Fractional diffusion in lithium-ion
batteries: 3%c = D(—A)#/%c — R(c). EQ-FEM
models anomalous aging, energy-stable SOC

evolution.

Solar nanofluids: Fractional Rayleigh-Bénard,
spectral methods capture subdiffusive plumes,
boosting efficiency 12%.

3) Material Science and Green Chemistry

Cahn-Hilliard for
nanomaterials:

Fractional phase-field
Positivity-preserving DG

simulates Ostwald ripening in green catalysts.

Application | Equation | Method | Key
Preservation

Nanofluid fNS- SAV- Energy,

Heat Brinkman | DG Positivity

Battery SOC | fDiffusion- | EQ- Dissipation
Reaction FEM law

Solar fRayleigh- | Spectral | Hamiltonian

Convection Bénard

Nanomaterial | fCahn- DG Mass

Phase Hilliard conservation

C. Error Analysis and Stability Proofs

Theorem (SAV): Letusmooth, then || u™—
u(ty) IS C(t? + h?), [6] energy contractivity

. Spectral: Gibbs-free via fractional filters.

Challenges: Nonlocal memory O(N?); mitigated
by SOE/Wavelet compression.
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D. Comparative Performance

Vs non-preserving: 10x stability in stiff regimes
(¢ <0.3). Parallel GPU implementations
(CUDA-MATLAB) scale to 1076 DoF.

IV. Conclusions

Structure-preserving methods
revolutionize FDE simulations, ensuring fidelity
in physics-constrained computing. SAV/EQ-FD
with
applications advancing renewable energy and

and spectral schemes dominate,

nanomaterials.
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