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ABSTRACT 

Taking into account transverse shear deformation effects, the flexural analysis of 

isotropic deep beams using fifth order shear deformation theory is presented. The 

number of variables in the present theory is same as that in the first order shear 

deformation theory. The function is used in displacement field is in terms of thickness 

coordinate to represent the shear deformation effects. The transverse shear stresses 

can be obtained directly from the use of constitutive relations with accuracy, satisfying 

the shear stress free conditions on the top and bottom surfaces of the beam. Hence, 

the theory obviates the need of shear correction factor. Governing differential 

equations and boundary conditions are obtained by using the principle of virtual work. 

The deep isotropic cantilever beam is considered for the numerical studies to show 

the efficiency of the theory. It has been shown that the theory is capable of predicting 

the local effects due to cubic load. The results obtained for flexure for mentioned 

beam using the fifth order theory are presented and discussed with those of other 

theories, and are found to agree well with the exact elasticity results.  

I. Introduction 

As the beams and plates are the most 

interesting areas of research, and these component 

is being regularly used in daily engineering 

applications of Engineering. In 1705 Euler and 

Bernoulli gave the Classical Beam Theory on the 

first mathematical model of nature of the 

resistance of beam developed in 1638 by Galileo. 

Saint Venant (1856) presented the complete 

solution of the beam problems considering bending 

and shear stresses. After the Krichhoff (1850) these 

theories get matured. 

It is well-known that elementary theory of 

bending of beam based on Euler-Bernoulli 

hypothesis disregards the effects of the shear 

deformation and stress concentration. The theory is 

suitable for slender beams and is not suitable for 

thick or deep beams since it is based on the 

assumption that the transverse normal to neutral 

axis remains so during bending and after bending, 

implying that the transverse shear strain is zero. 

Since theory neglects the transverse shear 

deformation. It underestimates deflections in case 

of thick beams where shear deformation effects are 

significant. 

Bresse [1], Rayleigh [2] and Timoshenko [3] 

were the pioneer investigators to include refined 

effects such as rotatory inertia and shear 

deformation in the beam theory. Timoshenko 

showed that the effect of transverse vibration of 
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prismatic bars. This theory is now widely referred to 

as Timoshenko beam theory or first order shear 

deformation theory (FSDT) in the literature. In this 

theory transverse shear strain distribution is 

assumed to be constant through the beam 

thickness and thus requires shear correction factor 

to appropriately represent the strain energy of 

deformation. 

Cowper [4] has given refined expression for 

the shear correction factor for different cross-

sections of beam. The accuracy of Timoshenko 

beam theory for transverse vibrations of simply 

supported beam in respect of the fundamental 

frequency is verified by Cowper [5] with a plane 

stress exact elasticity solution. 

To remove the discrepancies in classical and 

first order shear deformation theories, higher order 

or refined shear deformation theories were 

developed and available in the open literature for 

static and vibration analysis of beam 

Levinson [6], Bickford [7] Rehfield and Murty 

[8], Krishna Murthy [9], Baluch et al. [10], 

Bhimaraddi and Chandrashekhara [11] presented 

parabolic shear deformation theories assuming a 

higher variation of axial displacement in terms of 

thickness coordinate. These theories satisfy shear 

stress free boundary conditions on top and bottom 

surfaces of beam and thus obviate the need of 

shear correction factor. 

Irretier [12] studied the refined dynamical 

effects in linear, homogenous beam according to 

theories, which exceed the limits of the Euler-

Bernoulli beam theory. These effects are rotary 

inertia, shear deformation, rotary inertia and shear 

deformation, axial pre-stress, twist and coupling 

between bending and torsion. Kant and Gupta [13], 

and Heyliger and Reddy [14] presented finite 

element models based on higher order shear 

deformation uniform rectangular beams. However, 

these displacement based finite element models 

are not free from phenomenon of shear locking 

[15,16]. 

There is another class of refined theories, 

which includes trigonometric functions to 

represent the shear deformation effects through 

the thickness. Vlasov and letont’ev [17] and Stein 

[18] developed refined shear deformation theories 

for thick beams including sinusoidal function in 

terms of thickness coordinate in displacement field. 

However, with these theories shear stress free 

boundary conditions are not satisfied at top and 

bottom surfaces of the beam. This discrepancy is 

removed by Rao [19] in a refined theory developed 

for beam. However, formulation of theory is 

variationally inconsistent.  

A study of literature by Ghugal and Shimpi 

[20] indicates that the research work dealing with 

flexural analysis of thick beams using refined 

trigonometric and hyperbolic shear deformation 

theories is very scarce and is still in infancy. 

I. DEVELOPMENT OF THEORY  

The beam under consideration as shown in Fig.1 

occupies in Cartesian coordinate system the region 

0 ; ;
2 2 2 2

b b h h
x L y z  −   −    

where x, y, z are Cartesian coordinates, L and b are 

the length and width of beam in the x and y 

directions respectively, and h is the depth of the 

beam in the z-direction. The beam is made up of 

homogeneous, linearly elastic isotropic material.  

A. The displacement field 

The displacement field of the present beam 

theory is of the form [18] as given below:  

( )
2 4

4
( , )
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4 16
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Fig. 1: Beam under bending in x-z plane 
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where u is the axial displacement in x direction and 

w is the transverse displacement in z direction of 

the beam. The function is used in displacement field 

is in terms of thickness coordinate to represent the 

shear deformation effects. The   represents rotation 

of the beam at neutral axis, which is an unknown 

function to be determined. 

B. Normal and Shear Strain 

22 4

2 4

4 16
2        (2)

3 5
x

u d w z z d
z z

z dx h h dx




   
= = − + − −  
    

( )
2 4

4
2 4 16  zx

u dw z z
x

z dx h h
 

   
= + = − −  
    

 (3) 

C. Stress Strain Relationship 

     
x x

zx zx

E

G

 

 

=

=
                       (4) 

D. Governing Equations and Boundary Conditions 

Using the expressions for strains and stresses (2) 

through (4) and using the principle of virtual work, 

variationally consistent governing differential 

equations and boundary conditions for the beam 

under consideration can be obtained. The principle 

of virtual work when applied to the beam leads to: 

( )
.

/2

0 /2

0
( ) 0

x x zx zx

x L z h

x z h

x L

x

b dxdz

q x wdx

   



= =+

= =−

=

=

+

− =

 



 (5) 

where the symbol   denotes the variational 

operator. Employing Green’s theorem in Eqn. (4) 

successively, we obtain the coupled Euler-Lagrange 

equations which are the governing differential 

equations and associated boundary conditions of 

the beam. The governing differential equations 

obtained are as follows: 

( )
4 3

4 3

12
0

7

d w d
EI EI q x

dx dx


− − =    (6) 

( )
3 2

3 2

12
2.96 2.4635

7

d w d
EI EI GA x

dx dx


− + (7)   

 The associated consistent natural boundary 

conditions obtained are of following form:  

At the ends x = 0 and x = L 

0
2

2

=== w
dx

d
EI

dx

wd
EI


          (8) 

Thus the boundary value problem of the beam 

bending is given by the above variationally 

consistent governing differential equations and 

boundary conditions.  

The General Solution of Governing Equilibrium 

Equations of the Beam  

The general solution for transverse displacement 

w(x) and warping function (x) is obtained using 

Eqns. (6) and (7) using method of solution of linear 

differential equations with constant coefficients. 

Integrating and rearranging the first governing Eqn. 

(6), we obtain the following equation                                                

( )3 2

03 2

Q xd w d
A

dx dx EI


= +    (9) 

where Q(x) is the generalized shear force for beam 

and  it is given by  ( ) 1

0

x

Q x qdx C= +    .  

Now second governing Eqn (7) is rearranged in the 

following form:            

3 2

0

3 2

0

Bd w d

dx A dx


 = −       (10) 

A single equation in terms of   is now obtained 

using Eqns (9) and (10) as:  

2
2

2

( )d Q x

dx EI


 


− =     (11)  

where constants   ,   and   in Eqns. (10) and 

(11) are as follows  

20 0
0

0 0

, and
B C GA

A
A A EI


  



   
= − = =   
   

 

The general solution of Eqn. (11) is as follows: 

2 3

( )
( ) cosh sinh

Q x
x C x C x

EI
  


= + −           (12) 

 The equation of transverse displacement w(x) is 

obtained by substituting the expression of   (x) in 

Eqn. (12) and then integrating it thrice with respect 
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to x. The general solution for w(x) is obtained as 

follows: 

( )
3

201
2 33

0

2

4 5 6

sinh cosh
1 6

( )

2

AC x EI
C x C x

B
w x q dx dx dx dx

EI x
C C x C

   
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+ − −  
  = +

 
 + + +
 
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  (13) 

where
1 2 3 4 5 6, , , , and C C C C C C are 

arbitrary constants and can be obtained by 

imposing natural boundary / end conditions of 

beam. 

II. ILLUSTRATIVE EXAMPLE 

In order to prove the efficacy of the present theory, 

the following numerical examples are considered. 

The following material properties for beam are 

used  

E = 210 GPa, μ = 0.3 and  = 7800 Kg/m3 

where E is the Young’s modulus,  is the density, 

and μ is the Poisson’s ratio of beam material. 

Example  

The cantilever beam is as shown in Fig. 2 subjected 

to varying load, 

3

0 3
( )

x
q x q

L

 
=  

 
 on surface z = -h/2 

acting in the downward z direction 

 

Fig. 2: Cantilever Beam with Cubic load 

The final expressions for above loading & 

boundary conditions are obtained as follows: 

1) Transverse displacement w(x) and  (x) 
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00
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  (15)  

Substituting expressions for w and   given by Eqns. 

(14) and (15) into Eqns. (1) through (4) the final 

expressions for axial displacement u, transverse 

displacement w, axial stresses 
x and transverse 

shear stress
zx can be obtained respectively. 

2) Expression for Axial Displacement (𝑢̅): 
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  (16) 

3) Expression for Axial Stress (𝜎𝑥̅̅ ̅): 
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      (17) 

4) Expression for Transverse shear Stress 

using equilibrium equation (𝜏𝑍𝑋
𝐸𝐸̅̅ ̅̅̅):   

It is obtained using stress equilibrium equation of 

two dimensional elasticity which is as follows: 

0x zx

x z
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  (19) 

5) Expression for transverse shear stress 

obtained from constitutive relationship (𝜏𝑍𝑋
𝐶𝑅̅̅ ̅̅̅):   

2 4 4

0

2 4 4

0

1
2 4 16 sinh cosh 1

4

CR

zx

AL z z x
x x

h C h h L
  

   
= − − − + −   

   

  (20) 

III. RESULTS 

In this paper, the results for in plane displacement, 

transverse displacement, axial and transverse 

stresses are presented in the following non 

dimensional form for the purpose of presenting the 

results in this work. 

For beam subjected to cubic load, q(x) 
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3

4

10
, , ,x zx

x zx

b bEbu Ebh w
u w

qh qL q q

 
 = = = =

 

Table 1: Non-Dimensional Axial Displacement (𝑢̅) At 

(X=0.25l, Z=H/2), Transverse Displacement (𝑤̅) At 

(X=0.25l, Z=0) Axial Stress (𝜎𝑥̅̅ ̅) At (X=0.25l, Z=H/2) 

Maximum Transverse Shear Stress (𝜏𝑧𝑥̅̅ ̅̅ ) (X=0, Z=0) 

Of The Beam For Aspect Ratio 4 & 10 

Model S

ETB 0.67188 -16.20078 -13.20469 NA 1.49414

FSDT 0.67179 -16.20703 -13.20469 1.17692 1.49414

HSDT 0.85533 -18.03826 -14.77891 1.50000 1.49360

TSDT 0.85523 -18.05677 -14.78062 1.54807 1.49355

V Order 0.85396 -17.98587 -14.76302 1.39175 1.49372

ETB 0.67188 -253.13721 -82.52930 NA 3.73535

FSDT 0.67187 -253.23486 -82.52930 2.94231 3.73535

HSDT 0.70123 -257.73092 -84.10352 3.75000 3.73513

TSDT 0.70122 -257.77719 -84.10523 3.87018 3.73511

V Order 0.70102 -257.59994 -84.08763 3.47937 3.73518

4

10

EE

zxw u  CR

zx

  

 

Fig. 3: Variation of axial displacement (𝑢̅) through 

the thickness of beam at (x = 0.25L, z) for aspect 

ratio 4.   

 

Fig. 4: Variation of axial displacement (𝑢̅) through 

the thickness of beam at (x = 0.25L, z) for aspect 

ratio 10. 

 

Fig. 5: Variation of axial stress (𝜎𝑥̅̅ ̅) through the 

thickness of beam at (x = 0.25L, z) for aspect ratio 4.
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Fig. 6: Variation of axial stress (𝜎𝑥̅̅ ̅) through the 

thickness of beam at (x= 0.25L, z) for aspect ratio 

10. 

 

Fig. 7: Variation of transverse shear stress (𝜏𝑧𝑥̅̅ ̅̅ ) 

through the thickness of beam at (x = 0.25, z) obtain 

using equilibrium equation for aspect ratio 4.  

 

Fig. 8: Variation of transverse shear stress (𝜏𝑧𝑥̅̅ ̅̅ ) 

through the thickness of beam at (x = 0, z) obtain 

using equilibrium equation for aspect ratio 10.  

 

 Fig. 9: Variation of transverse shear stress (𝜏𝑧𝑥̅̅ ̅̅ ) 

through the thickness of beam at (x = 0.25, z) obtain 

using constitutive relationship for aspect ratio 4. 
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Fig. 10: Variation of transverse shear stress (𝜏𝑧𝑥̅̅ ̅̅ ) 

through the thickness of beam at (x = 0, z) obtain 

using constitutive relationship for aspect ratio 10. 

 

Fig. 11: Variation of transverse displacement (𝑤̅) 

with aspect ratio (S) of beam at (x = 0.25,L, z). 

IV. DISCUSSION OF RESULTS 

Axial Displacement (𝑢̅):  The comparison of 

results of maximum non-dimensional axial 

displacement for the aspect ratios of 4 and 10 is 

presented in Table 1 and 2. Among the results of all 

the other theories, the values of axial displacement 

given by present theory are close agreement with 

the exact values for aspect ratio 4 and 10. The 

theories of Bernoulli-Euler as well as Timoshenko 

for aspect ratio 10, all the refined theories give 

excellent agreement with each other as compare to 

exact solution.  

Transverse Displacement (𝑤̅): Among the 

results of all the other theories, the values of 

present theory are in excellent agreement with 

exact values for aspect ratio 2, 4 and 10.  The 

present theory result are close agreement with 

exact elasticity solution given by Timoshenko and 

Goodier. 

Axial Stress (𝜎𝑥̅̅ ̅): The axial stress given by 

present theory are compared with other higher 

order shear deformation theories, it is observed 

that result by present theory are in excellent 

agreement with other theories. 

Transverse shear Stress (𝜏𝑧𝑥̅̅ ̅̅ ):  The 

Transverse Shear Stress are obtained by integration 

of equilibrium equation of two dimensional 

elasticity. The transverse shear stress satisfies the 

stress free boundary conditions on the top and 

bottom surfaces of the beam when these stresses 

are obtained by both the above mentioned 

approaches. The comparison of maximum non-

dimensional transverse shear stress for a beam with 

distributed load, obtained by the present  theory 

and other refined theories is presented for aspect 

ratio of 4 and 10 respectively. FSDT underestimates 

the value of this stress but use of equilibrium 

equation gives exact value of this stress.  

V. CONCLUSION 

1. The use of present theory gives excellent 

agreement results available for higher order 

and refined shear deformation theories for 

transverse displacement are in tune with the 

results of present theory.   

2. The transverse shear stress when obtained 

from equilibrium changes its sign but still it 

is realistic (cosine).  The values of transverse 

shear stress from equilibrium equation are 

in close agreement. 

3. The governing differential equations and the 

associated boundary conditions are 

variationally consistent. 

4. In general, the use of present theory gives 

accurate results as seen from the numerical 
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examples studied and it is capable of 

predicting the stresses and displacements at 

support for simply supported beam. This 

validates the efficacy and credibility of 

trigonometric shear deformation theory. 

REFERENCES 

[1] Bresse, J.A.C.: Cours de Mechanique 

Applique, Mallet-Bachelier, Paris, (1859) 

[2] Lord Rayleigh, J.W.S.: The Theory of 

Sound ,Macmillan Publishers, London, 

(1877) 

[3] Timoshenko, S. P. On the correction for 

shear of the differential equation for 

transverse vibrations of prismatic bars, 

Philosophical Magazine, 1921, 41 (6), p. 

742–46 

[4] Cowper, G.R.: The shear coefficients in 

Timoshenko beam theory. ASME J.Applied 

Mechanics 33(2),335-340 (1966) 

[5] Cowper, G.R.: On the accuracy of 

Timoshenko beam theory .ASCE J. 

Engineering Mechanics Division. 94 

(EM6),1447-1453 (1968) 

[6] Levinson. M.: A new rectangular beam 

theory. J. Sound and Vibration. 74(1), 81-87 

(1981) 

[7] Bickford, W.B.: A consistent higher order 

beam theory, In: Proceeding of Dev. In 

Theoretical And applied 

Mechanics ,SETAM,11 137-150 (1982) 

[8] Rehfield ,L.W. and Murthy, P.L.N: Toward a 

new engineering Theory of 

Bending :fundamentals. AIAA Journal. 20(5), 

693-699 (1982) 

[9] Krishna Murthy, A.V.: Towards a consistent 

beam theory, AIAA Journal. 22 (6),811-816 

(1984) 

[10] Baluch , M.H, Azad, A.K. Khidir, M. A.: 

Techincal theory of beams with normal 

strain. ASCE J. Engg. Mech .110(8),1233-

1237 (1984) 

[11] Bhimaraddi, A., Chandrashekhara, K.: 

Observations on higher order beam Theory. 

ASCEJ. Aerospace Engineering. 6(4), 408-413 

(1993) 

[12] Irretier, H.: Refined effects in beam theories 

and their influence on natural frequencies of 

beam. Proceeding of Euromech Colloquium 

219, on Refined Dynamical Theories  of 

Beam, Plates and Shells and Their 

Applications, Edited by I. Elishak off and H. 

Irretier ,Springer-Verlag, Berlin, 163-179 

(1986) 

[13] Kant, T., Gupta, A.: A finite element model 

for higher order shear deformable beam 

theory. J. Sound and Vibration 125 (2), 193-

202(1988) 

[14] Heyliger, P.R, Reddy, J.N.: A higher order 

beam finite element for bending and 

vibration problems. J. Sound and Vibration. 

126(2),309-326 (1988) 

[15] Averill, R.C., Reddy, J.N. An assessment of 

four-noded plate finite elements based on a 

generalized third order theory. International 

Journal of Numerical Methods in 

Engineering, 33,1553-1572 (1992)    

[16] Reddy, J. N.: An Introduction to Finite 

Element Method. 2nd ed., 177-179. 519-

520, McGraw-Hill, Inc., New York (1993) 

[17] Vlasov, V. Z., Leont’ev, U.N.: Beams, Plates 

and Shells on Elastic Foundations Moskva, 

Chapter 1, 1-8. Translated form the Russian 

by A. Barouch , and T. Plez , Iseral Program 

for Scientific Translation Ltd., Jerusalem 

(1966)   

[18] Stein, M.: Vibration of beams and plate 

strips with three dimensional flexibliuty. 

ASME J. App. Mech. 56(1), 228-231 (1989) 

[19] Rao, B.S.: A refined beam theory .M.Tech, 

Theiss, Deptt. of Aero. Engg. IIT Bombay, 

Powai, Mumbai, India (1989) 

[20] Ghugal, Y. M., Shmipi, R. P.: A review of 

refined shear deformation theories for 

isotropic and anisotropic laminated beams. 

Journal of Reinforced Plastics And 

Composites,20(3),255-272 (2001)   

http://www.ijoer.in/


International Journal of Engineering Research-Online  
A Peer Reviewed International Journal   

Articles available online http://www.ijoer.in; editorijoer@gmail.com 

Vol.11, Issue.4, 2023 
July-Aug   

 

9 Farid Zaeem & Suchita Hirde 
 

 

[21] Ghugal, Y. M.: A Trigonometric Shear 

Deformation Theory for Flexure and Free 

Vibration of Isotropic Thick Beams. 

Departmental Report, No. 4, Applied of 

Mechanics Department, Government 

College of Engineering, Aurangabad, India, 

(2007) 

[22] Sharma, R., Ghugal, Y. M.: Flexural Analysis 

of Thick Isotropic Beams using Hyperbolic 

Shear deformation Theory. M.E. 

Dissertation, Department of Applied 

Mechanics, Government Engineering 

College Aurangabad, India, pp.1-133. (2007) 

[23] 23. Hildebrand, F.B., Reissner, 

E.C., :Distribution of Stress in Built-In Beam   

of Narrow Rectangular Cross Section, 

Journal of Applied Mechanics, Vol.No.-64, 

Sep-1942, pp.109-116. (1942) 

[24] Silverman, I. K.: Flexure of Laminated Beams 

Journal of Structural Division, Proceedings of 

ASCE, Vol. 106, 711-725 (1980) 

[25] Timoshenko, S. P., Goodier, J. N.: Theory of 

Elasticity, McGraw-Hill, 3rd Int. ed., 

Singapore. (1970) 

[26] Venkatraman, B. and Patel, S.A.: Structural 

Mechanics with Introduction to Elasticity 

and Plasticity. McGraw-Hill Book Company, 

New York, Chapter 11,158-170. (1970) 

[27] Levinson, M.: A New Rectangular Beam 

Theory. Journal of Sound and Vibration, Vol. 

74, 81-87 (1981). 

 

http://www.ijoer.in/

